Circle-valued Morse theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
de Gruyter
2006
|
Schriftenreihe: | De Gruyter studies in mathematics
32 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Includes bibliographical references (p. [437]-444) and index In 1927, M Morse discovered that the number of critical points of a smooth function on a manifold is closely related to the topology of the manifold. This became a starting point of the Morse theory. This book aims to give a systematic treatment of the geometric foundations of a subfield of that topic, the circle-valued Morse functions |
Beschreibung: | 1 Online-Ressource (IX, 454 S.) |
ISBN: | 3110158078 9783110158076 9783110197976 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042346815 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150212s2006 |||| o||u| ||||||eng d | ||
020 | |a 3110158078 |9 3-11-015807-8 | ||
020 | |a 9783110158076 |9 978-3-11-015807-6 | ||
020 | |a 9783110197976 |9 978-3-11-019797-6 | ||
024 | 7 | |a 10.1515/9783110197976 |2 doi | |
035 | |a (OCoLC)236337992 | ||
035 | |a (OCoLC)647668250 | ||
035 | |a (OCoLC)845454917 | ||
035 | |a (DE-599)BVBBV042346815 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-706 |a DE-703 |a DE-1043 |a DE-858 |a DE-19 | ||
082 | 0 | |a 515 | |
082 | 0 | |a 510 | |
100 | 1 | |a Pajitnov, Andrei V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Circle-valued Morse theory |c Andrei V. Pajitnov |
264 | 1 | |a Berlin [u.a.] |b de Gruyter |c 2006 | |
300 | |a 1 Online-Ressource (IX, 454 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter studies in mathematics |v 32 | |
500 | |a Includes bibliographical references (p. [437]-444) and index | ||
500 | |a In 1927, M Morse discovered that the number of critical points of a smooth function on a manifold is closely related to the topology of the manifold. This became a starting point of the Morse theory. This book aims to give a systematic treatment of the geometric foundations of a subfield of that topic, the circle-valued Morse functions | ||
650 | 7 | |a Morse-Theorie |2 gnd | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Morse theory | |
650 | 0 | 7 | |a Morse-Theorie |0 (DE-588)4197103-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Morse-Theorie |0 (DE-588)4197103-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.degruyter.com/doi/book/10.1515/9783110197976 |x Verlag |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-GMA |a ZDB-23-GBA | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q FHA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
940 | 1 | |q ZDB-23-GBA_2000/2014 | |
940 | 1 | |q ZDB-23-GMA_2000/2014 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027783296 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152967896498177 |
---|---|
any_adam_object | |
author | Pajitnov, Andrei V. |
author_facet | Pajitnov, Andrei V. |
author_role | aut |
author_sort | Pajitnov, Andrei V. |
author_variant | a v p av avp |
building | Verbundindex |
bvnumber | BV042346815 |
collection | ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA |
ctrlnum | (OCoLC)236337992 (OCoLC)647668250 (OCoLC)845454917 (DE-599)BVBBV042346815 |
dewey-full | 515 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis 510 - Mathematics |
dewey-raw | 515 510 |
dewey-search | 515 510 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02247nmm a2200577zcb4500</leader><controlfield tag="001">BV042346815</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150212s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110158078</subfield><subfield code="9">3-11-015807-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110158076</subfield><subfield code="9">978-3-11-015807-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110197976</subfield><subfield code="9">978-3-11-019797-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110197976</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)236337992</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)647668250</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)845454917</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042346815</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pajitnov, Andrei V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Circle-valued Morse theory</subfield><subfield code="c">Andrei V. Pajitnov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">de Gruyter</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 454 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter studies in mathematics</subfield><subfield code="v">32</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [437]-444) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In 1927, M Morse discovered that the number of critical points of a smooth function on a manifold is closely related to the topology of the manifold. This became a starting point of the Morse theory. This book aims to give a systematic treatment of the geometric foundations of a subfield of that topic, the circle-valued Morse functions</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Morse-Theorie</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Morse theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Morse-Theorie</subfield><subfield code="0">(DE-588)4197103-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Morse-Theorie</subfield><subfield code="0">(DE-588)4197103-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9783110197976</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-GMA</subfield><subfield code="a">ZDB-23-GBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GBA_2000/2014</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GMA_2000/2014</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027783296</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042346815 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:19:03Z |
institution | BVB |
isbn | 3110158078 9783110158076 9783110197976 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027783296 |
oclc_num | 236337992 647668250 845454917 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (IX, 454 S.) |
psigel | ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA FKE_PDA_DGG FLA_PDA_DGG FHA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG ZDB-23-GBA_2000/2014 ZDB-23-GMA_2000/2014 |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | de Gruyter |
record_format | marc |
series2 | De Gruyter studies in mathematics |
spelling | Pajitnov, Andrei V. Verfasser aut Circle-valued Morse theory Andrei V. Pajitnov Berlin [u.a.] de Gruyter 2006 1 Online-Ressource (IX, 454 S.) txt rdacontent c rdamedia cr rdacarrier De Gruyter studies in mathematics 32 Includes bibliographical references (p. [437]-444) and index In 1927, M Morse discovered that the number of critical points of a smooth function on a manifold is closely related to the topology of the manifold. This became a starting point of the Morse theory. This book aims to give a systematic treatment of the geometric foundations of a subfield of that topic, the circle-valued Morse functions Morse-Theorie gnd Manifolds (Mathematics) Morse theory Morse-Theorie (DE-588)4197103-6 gnd rswk-swf Morse-Theorie (DE-588)4197103-6 s 1\p DE-604 http://www.degruyter.com/doi/book/10.1515/9783110197976 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pajitnov, Andrei V. Circle-valued Morse theory Morse-Theorie gnd Manifolds (Mathematics) Morse theory Morse-Theorie (DE-588)4197103-6 gnd |
subject_GND | (DE-588)4197103-6 |
title | Circle-valued Morse theory |
title_auth | Circle-valued Morse theory |
title_exact_search | Circle-valued Morse theory |
title_full | Circle-valued Morse theory Andrei V. Pajitnov |
title_fullStr | Circle-valued Morse theory Andrei V. Pajitnov |
title_full_unstemmed | Circle-valued Morse theory Andrei V. Pajitnov |
title_short | Circle-valued Morse theory |
title_sort | circle valued morse theory |
topic | Morse-Theorie gnd Manifolds (Mathematics) Morse theory Morse-Theorie (DE-588)4197103-6 gnd |
topic_facet | Morse-Theorie Manifolds (Mathematics) Morse theory |
url | http://www.degruyter.com/doi/book/10.1515/9783110197976 |
work_keys_str_mv | AT pajitnovandreiv circlevaluedmorsetheory |