Maximum principles and sharp constants for solutions of elliptic and parabolic systems:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
[2012]
|
Schriftenreihe: | Mathematical surveys and monographs
Volume 183 |
Schlagworte: |
Partial differential equations
> General topics
> Inequalities involving derivatives and differential and integral operators, inequalities for integrals
Potential theory
> Higher-dimensional theory
> Integral representations, integral operators, integral equations methods
Partial differential equations
> Equations of mathematical physics and other areas of application
> PDEs in connection with fluid mechanics
|
Online-Zugang: | UBM01 UBR01 URL des Erstveröffentlichers |
Beschreibung: | Literaturverzeichnis: Seite 297 - 306 |
Beschreibung: | 1 Online-Ressource (vii, 317 Seiten) |
ISBN: | 9780821891698 |
DOI: | 10.1090/surv/183 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV042341432 | ||
003 | DE-604 | ||
005 | 20230828 | ||
007 | cr|uuu---uuuuu | ||
008 | 150212s2012 xxu|||| o||u| ||||||eng d | ||
020 | |a 9780821891698 |c Online |9 978-0-8218-9169-8 | ||
024 | 7 | |a 10.1090/surv/183 |2 doi | |
035 | |a (OCoLC)903406469 | ||
035 | |a (DE-599)BVBBV042341432 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-355 |a DE-19 |a DE-83 |a DE-11 | ||
050 | 0 | |a QA295 | |
082 | 0 | |a 515/.983 | |
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
100 | 1 | |a Kresin, Gershon |d 1951- |e Verfasser |0 (DE-588)1029450994 |4 aut | |
245 | 1 | 0 | |a Maximum principles and sharp constants for solutions of elliptic and parabolic systems |c Gershon Kresin, Vladimir Maz'ya. The text was translated from Russian by Tatiana O. Shaposhnikova |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c [2012] | |
264 | 4 | |c © 2012 | |
300 | |a 1 Online-Ressource (vii, 317 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematical surveys and monographs |v Volume 183 | |
500 | |a Literaturverzeichnis: Seite 297 - 306 | ||
650 | 4 | |a Inequalities (Mathematics) | |
650 | 4 | |a Maximum principles (Mathematics) | |
650 | 7 | |a Partial differential equations -- General topics -- Inequalities involving derivatives and differential and integral operators, inequalities for integrals |2 msc | |
650 | 7 | |a Partial differential equations -- Qualitative properties of solutions -- Maximum principles |2 msc | |
650 | 7 | |a Partial differential equations -- Elliptic equations and systems -- Second-order elliptic systems |2 msc | |
650 | 7 | |a Partial differential equations -- Parabolic equations and systems -- Second-order parabolic systems |2 msc | |
650 | 7 | |a Potential theory -- Higher-dimensional theory -- Integral representations, integral operators, integral equations methods |2 msc | |
650 | 7 | |a Partial differential equations -- Elliptic equations and systems -- Higher-order elliptic equations |2 msc | |
650 | 7 | |a Partial differential equations -- Equations of mathematical physics and other areas of application -- PDEs in connection with fluid mechanics |2 msc | |
650 | 7 | |a Partial differential equations -- Equations of mathematical physics and other areas of application -- PDEs in connection with mechanics of deformable solids |2 msc | |
650 | 0 | 7 | |a Elliptisches System |0 (DE-588)4121184-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maximumprinzip |0 (DE-588)4169165-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Parabolisches System |0 (DE-588)4352365-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maximumprinzip |0 (DE-588)4169165-9 |D s |
689 | 0 | 1 | |a Elliptisches System |0 (DE-588)4121184-4 |D s |
689 | 0 | 2 | |a Parabolisches System |0 (DE-588)4352365-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Mazʹja, Vladimir Gilelevič |d 1937- |e Verfasser |0 (DE-588)121490602 |4 aut | |
700 | 1 | |a Šapošnikova, T. O. |d 1946- |0 (DE-588)13670493X |4 trl | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-8218-8981-7 |
830 | 0 | |a Mathematical surveys and monographs |v Volume 183 |w (DE-604)BV042339669 |9 183 | |
856 | 4 | 0 | |u https://doi.org/10.1090/surv/183 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-138-AMS | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-027777948 | ||
966 | e | |u https://doi.org/10.1090/surv/183 |l UBM01 |p ZDB-138-AMS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1090/surv/183 |l UBR01 |p ZDB-138-AMS |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804152952874598400 |
---|---|
any_adam_object | |
author | Kresin, Gershon 1951- Mazʹja, Vladimir Gilelevič 1937- |
author2 | Šapošnikova, T. O. 1946- |
author2_role | trl |
author2_variant | t o š to toš |
author_GND | (DE-588)1029450994 (DE-588)121490602 (DE-588)13670493X |
author_facet | Kresin, Gershon 1951- Mazʹja, Vladimir Gilelevič 1937- Šapošnikova, T. O. 1946- |
author_role | aut aut |
author_sort | Kresin, Gershon 1951- |
author_variant | g k gk v g m vg vgm |
building | Verbundindex |
bvnumber | BV042341432 |
callnumber-first | Q - Science |
callnumber-label | QA295 |
callnumber-raw | QA295 |
callnumber-search | QA295 |
callnumber-sort | QA 3295 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 560 |
collection | ZDB-138-AMS |
ctrlnum | (OCoLC)903406469 (DE-599)BVBBV042341432 |
dewey-full | 515/.983 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.983 |
dewey-search | 515/.983 |
dewey-sort | 3515 3983 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1090/surv/183 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03493nmm a2200649 cb4500</leader><controlfield tag="001">BV042341432</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230828 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150212s2012 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821891698</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-8218-9169-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1090/surv/183</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)903406469</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042341432</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA295</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.983</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kresin, Gershon</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1029450994</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maximum principles and sharp constants for solutions of elliptic and parabolic systems</subfield><subfield code="c">Gershon Kresin, Vladimir Maz'ya. The text was translated from Russian by Tatiana O. Shaposhnikova</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2012]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 317 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematical surveys and monographs</subfield><subfield code="v">Volume 183</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis: Seite 297 - 306</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inequalities (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximum principles (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partial differential equations -- General topics -- Inequalities involving derivatives and differential and integral operators, inequalities for integrals</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partial differential equations -- Qualitative properties of solutions -- Maximum principles</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partial differential equations -- Elliptic equations and systems -- Second-order elliptic systems</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partial differential equations -- Parabolic equations and systems -- Second-order parabolic systems</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Potential theory -- Higher-dimensional theory -- Integral representations, integral operators, integral equations methods</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partial differential equations -- Elliptic equations and systems -- Higher-order elliptic equations</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partial differential equations -- Equations of mathematical physics and other areas of application -- PDEs in connection with fluid mechanics</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partial differential equations -- Equations of mathematical physics and other areas of application -- PDEs in connection with mechanics of deformable solids</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptisches System</subfield><subfield code="0">(DE-588)4121184-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maximumprinzip</subfield><subfield code="0">(DE-588)4169165-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Parabolisches System</subfield><subfield code="0">(DE-588)4352365-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maximumprinzip</subfield><subfield code="0">(DE-588)4169165-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elliptisches System</subfield><subfield code="0">(DE-588)4121184-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Parabolisches System</subfield><subfield code="0">(DE-588)4352365-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mazʹja, Vladimir Gilelevič</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121490602</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Šapošnikova, T. O.</subfield><subfield code="d">1946-</subfield><subfield code="0">(DE-588)13670493X</subfield><subfield code="4">trl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-8218-8981-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematical surveys and monographs</subfield><subfield code="v">Volume 183</subfield><subfield code="w">(DE-604)BV042339669</subfield><subfield code="9">183</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1090/surv/183</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-138-AMS</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027777948</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1090/surv/183</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-138-AMS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1090/surv/183</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-138-AMS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042341432 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:53Z |
institution | BVB |
isbn | 9780821891698 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027777948 |
oclc_num | 903406469 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-83 DE-11 |
owner_facet | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-83 DE-11 |
physical | 1 Online-Ressource (vii, 317 Seiten) |
psigel | ZDB-138-AMS |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | American Mathematical Society |
record_format | marc |
series | Mathematical surveys and monographs |
series2 | Mathematical surveys and monographs |
spelling | Kresin, Gershon 1951- Verfasser (DE-588)1029450994 aut Maximum principles and sharp constants for solutions of elliptic and parabolic systems Gershon Kresin, Vladimir Maz'ya. The text was translated from Russian by Tatiana O. Shaposhnikova Providence, Rhode Island American Mathematical Society [2012] © 2012 1 Online-Ressource (vii, 317 Seiten) txt rdacontent c rdamedia cr rdacarrier Mathematical surveys and monographs Volume 183 Literaturverzeichnis: Seite 297 - 306 Inequalities (Mathematics) Maximum principles (Mathematics) Partial differential equations -- General topics -- Inequalities involving derivatives and differential and integral operators, inequalities for integrals msc Partial differential equations -- Qualitative properties of solutions -- Maximum principles msc Partial differential equations -- Elliptic equations and systems -- Second-order elliptic systems msc Partial differential equations -- Parabolic equations and systems -- Second-order parabolic systems msc Potential theory -- Higher-dimensional theory -- Integral representations, integral operators, integral equations methods msc Partial differential equations -- Elliptic equations and systems -- Higher-order elliptic equations msc Partial differential equations -- Equations of mathematical physics and other areas of application -- PDEs in connection with fluid mechanics msc Partial differential equations -- Equations of mathematical physics and other areas of application -- PDEs in connection with mechanics of deformable solids msc Elliptisches System (DE-588)4121184-4 gnd rswk-swf Maximumprinzip (DE-588)4169165-9 gnd rswk-swf Parabolisches System (DE-588)4352365-1 gnd rswk-swf Maximumprinzip (DE-588)4169165-9 s Elliptisches System (DE-588)4121184-4 s Parabolisches System (DE-588)4352365-1 s DE-604 Mazʹja, Vladimir Gilelevič 1937- Verfasser (DE-588)121490602 aut Šapošnikova, T. O. 1946- (DE-588)13670493X trl Erscheint auch als Druck-Ausgabe 978-0-8218-8981-7 Mathematical surveys and monographs Volume 183 (DE-604)BV042339669 183 https://doi.org/10.1090/surv/183 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Kresin, Gershon 1951- Mazʹja, Vladimir Gilelevič 1937- Maximum principles and sharp constants for solutions of elliptic and parabolic systems Mathematical surveys and monographs Inequalities (Mathematics) Maximum principles (Mathematics) Partial differential equations -- General topics -- Inequalities involving derivatives and differential and integral operators, inequalities for integrals msc Partial differential equations -- Qualitative properties of solutions -- Maximum principles msc Partial differential equations -- Elliptic equations and systems -- Second-order elliptic systems msc Partial differential equations -- Parabolic equations and systems -- Second-order parabolic systems msc Potential theory -- Higher-dimensional theory -- Integral representations, integral operators, integral equations methods msc Partial differential equations -- Elliptic equations and systems -- Higher-order elliptic equations msc Partial differential equations -- Equations of mathematical physics and other areas of application -- PDEs in connection with fluid mechanics msc Partial differential equations -- Equations of mathematical physics and other areas of application -- PDEs in connection with mechanics of deformable solids msc Elliptisches System (DE-588)4121184-4 gnd Maximumprinzip (DE-588)4169165-9 gnd Parabolisches System (DE-588)4352365-1 gnd |
subject_GND | (DE-588)4121184-4 (DE-588)4169165-9 (DE-588)4352365-1 |
title | Maximum principles and sharp constants for solutions of elliptic and parabolic systems |
title_auth | Maximum principles and sharp constants for solutions of elliptic and parabolic systems |
title_exact_search | Maximum principles and sharp constants for solutions of elliptic and parabolic systems |
title_full | Maximum principles and sharp constants for solutions of elliptic and parabolic systems Gershon Kresin, Vladimir Maz'ya. The text was translated from Russian by Tatiana O. Shaposhnikova |
title_fullStr | Maximum principles and sharp constants for solutions of elliptic and parabolic systems Gershon Kresin, Vladimir Maz'ya. The text was translated from Russian by Tatiana O. Shaposhnikova |
title_full_unstemmed | Maximum principles and sharp constants for solutions of elliptic and parabolic systems Gershon Kresin, Vladimir Maz'ya. The text was translated from Russian by Tatiana O. Shaposhnikova |
title_short | Maximum principles and sharp constants for solutions of elliptic and parabolic systems |
title_sort | maximum principles and sharp constants for solutions of elliptic and parabolic systems |
topic | Inequalities (Mathematics) Maximum principles (Mathematics) Partial differential equations -- General topics -- Inequalities involving derivatives and differential and integral operators, inequalities for integrals msc Partial differential equations -- Qualitative properties of solutions -- Maximum principles msc Partial differential equations -- Elliptic equations and systems -- Second-order elliptic systems msc Partial differential equations -- Parabolic equations and systems -- Second-order parabolic systems msc Potential theory -- Higher-dimensional theory -- Integral representations, integral operators, integral equations methods msc Partial differential equations -- Elliptic equations and systems -- Higher-order elliptic equations msc Partial differential equations -- Equations of mathematical physics and other areas of application -- PDEs in connection with fluid mechanics msc Partial differential equations -- Equations of mathematical physics and other areas of application -- PDEs in connection with mechanics of deformable solids msc Elliptisches System (DE-588)4121184-4 gnd Maximumprinzip (DE-588)4169165-9 gnd Parabolisches System (DE-588)4352365-1 gnd |
topic_facet | Inequalities (Mathematics) Maximum principles (Mathematics) Partial differential equations -- General topics -- Inequalities involving derivatives and differential and integral operators, inequalities for integrals Partial differential equations -- Qualitative properties of solutions -- Maximum principles Partial differential equations -- Elliptic equations and systems -- Second-order elliptic systems Partial differential equations -- Parabolic equations and systems -- Second-order parabolic systems Potential theory -- Higher-dimensional theory -- Integral representations, integral operators, integral equations methods Partial differential equations -- Elliptic equations and systems -- Higher-order elliptic equations Partial differential equations -- Equations of mathematical physics and other areas of application -- PDEs in connection with fluid mechanics Partial differential equations -- Equations of mathematical physics and other areas of application -- PDEs in connection with mechanics of deformable solids Elliptisches System Maximumprinzip Parabolisches System |
url | https://doi.org/10.1090/surv/183 |
volume_link | (DE-604)BV042339669 |
work_keys_str_mv | AT kresingershon maximumprinciplesandsharpconstantsforsolutionsofellipticandparabolicsystems AT mazʹjavladimirgilelevic maximumprinciplesandsharpconstantsforsolutionsofellipticandparabolicsystems AT saposnikovato maximumprinciplesandsharpconstantsforsolutionsofellipticandparabolicsystems |