Ordering braids:
Gespeichert in:
Vorheriger Titel: | Dehorney, Patrik Why are braids orderable? |
---|---|
Hauptverfasser: | , , , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
[2008]
|
Schriftenreihe: | Mathematical surveys and monographs
Volume 148 |
Schlagworte: | |
Online-Zugang: | UBM01 UBR01 Volltext |
Beschreibung: | Auf der Rückseite des Titelblatts: "The original edition of this work was published under the title "Why are braids orderable?" by Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, 2002, by the Société Mathématique de France, Paris, France. |
Beschreibung: | 1 Online-Ressource (ix, 323 Seiten) Illustrationen, Diagramme |
ISBN: | 9781470413750 |
DOI: | 10.1090/surv/148 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV042341037 | ||
003 | DE-604 | ||
005 | 20230830 | ||
007 | cr|uuu---uuuuu | ||
008 | 150212s2008 |||| o||u| ||||||eng d | ||
010 | |a 2008009859 | ||
020 | |a 9781470413750 |c Online |9 978-1-4704-1375-0 | ||
024 | 7 | |a 10.1090/surv/148 |2 doi | |
035 | |a (OCoLC)903351403 | ||
035 | |a (DE-599)GBV56270261X | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-19 |a DE-83 |a DE-11 | ||
050 | 0 | |a QA612.23 | |
082 | 0 | |a 514/.224 | |
084 | |a 31.11 |2 bkl | ||
084 | |a 31.61 |2 bkl | ||
100 | 1 | |a Dehornoy, Patrick |d 1952-2019 |e Verfasser |0 (DE-588)113599625 |4 aut | |
240 | 1 | 0 | |a Why Are Braids Orderable? |
245 | 1 | 0 | |a Ordering braids |c Patrick Dehornoy with Ivan Dynnikov, Dale Rolfsen, Bert Wiest |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c [2008] | |
264 | 4 | |c © 2008 | |
300 | |a 1 Online-Ressource (ix, 323 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematical surveys and monographs |v Volume 148 | |
500 | |a Auf der Rückseite des Titelblatts: "The original edition of this work was published under the title "Why are braids orderable?" by Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, 2002, by the Société Mathématique de France, Paris, France. | ||
650 | 4 | |a Braid theory | |
650 | 4 | |a Linear orderings | |
650 | 0 | 7 | |a Zopfgruppe |0 (DE-588)4225944-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Ordnung |0 (DE-588)4167706-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zopfgruppe |0 (DE-588)4225944-7 |D s |
689 | 0 | 1 | |a Lineare Ordnung |0 (DE-588)4167706-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Dynnikov, Ivan |d 1971- |e Verfasser |0 (DE-588)1173660313 |4 aut | |
700 | 1 | |a Rolfsen, Dale |e Verfasser |4 aut | |
700 | 1 | |a Wiest, Bert |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-8218-4431-1 |
780 | 0 | 0 | |i Vorangegangen ist |a Dehorney, Patrik |t Why are braids orderable? |d Paris : Société Mathématique de France, 2002 |z 2-85629-135-X |
830 | 0 | |a Mathematical surveys and monographs |v Volume 148 |w (DE-604)BV042339669 |9 148 | |
856 | 4 | 0 | |u https://doi.org/10.1090/surv/148 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-138-AMS | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-027777568 | ||
966 | e | |u https://doi.org/10.1090/surv/148 |l UBM01 |p ZDB-138-AMS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1090/surv/148 |l UBR01 |p ZDB-138-AMS |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804152952167858176 |
---|---|
any_adam_object | |
author | Dehornoy, Patrick 1952-2019 Dynnikov, Ivan 1971- Rolfsen, Dale Wiest, Bert |
author_GND | (DE-588)113599625 (DE-588)1173660313 |
author_facet | Dehornoy, Patrick 1952-2019 Dynnikov, Ivan 1971- Rolfsen, Dale Wiest, Bert |
author_role | aut aut aut aut |
author_sort | Dehornoy, Patrick 1952-2019 |
author_variant | p d pd i d id d r dr b w bw |
building | Verbundindex |
bvnumber | BV042341037 |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612.23 |
callnumber-search | QA612.23 |
callnumber-sort | QA 3612.23 |
callnumber-subject | QA - Mathematics |
collection | ZDB-138-AMS |
ctrlnum | (OCoLC)903351403 (DE-599)GBV56270261X |
dewey-full | 514/.224 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.224 |
dewey-search | 514/.224 |
dewey-sort | 3514 3224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1090/surv/148 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02534nmm a2200577 cb4500</leader><controlfield tag="001">BV042341037</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230830 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150212s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008009859</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470413750</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4704-1375-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1090/surv/148</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)903351403</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV56270261X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA612.23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.224</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dehornoy, Patrick</subfield><subfield code="d">1952-2019</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113599625</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Why Are Braids Orderable?</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ordering braids</subfield><subfield code="c">Patrick Dehornoy with Ivan Dynnikov, Dale Rolfsen, Bert Wiest</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2008]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 323 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematical surveys and monographs</subfield><subfield code="v">Volume 148</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auf der Rückseite des Titelblatts: "The original edition of this work was published under the title "Why are braids orderable?" by Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, 2002, by the Société Mathématique de France, Paris, France.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Braid theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear orderings</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zopfgruppe</subfield><subfield code="0">(DE-588)4225944-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Ordnung</subfield><subfield code="0">(DE-588)4167706-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zopfgruppe</subfield><subfield code="0">(DE-588)4225944-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lineare Ordnung</subfield><subfield code="0">(DE-588)4167706-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dynnikov, Ivan</subfield><subfield code="d">1971-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1173660313</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rolfsen, Dale</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiest, Bert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-8218-4431-1</subfield></datafield><datafield tag="780" ind1="0" ind2="0"><subfield code="i">Vorangegangen ist</subfield><subfield code="a">Dehorney, Patrik</subfield><subfield code="t">Why are braids orderable?</subfield><subfield code="d">Paris : Société Mathématique de France, 2002</subfield><subfield code="z">2-85629-135-X</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematical surveys and monographs</subfield><subfield code="v">Volume 148</subfield><subfield code="w">(DE-604)BV042339669</subfield><subfield code="9">148</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1090/surv/148</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-138-AMS</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027777568</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1090/surv/148</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-138-AMS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1090/surv/148</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-138-AMS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042341037 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:53Z |
institution | BVB |
isbn | 9781470413750 |
language | English |
lccn | 2008009859 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027777568 |
oclc_num | 903351403 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-83 DE-11 |
owner_facet | DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-83 DE-11 |
physical | 1 Online-Ressource (ix, 323 Seiten) Illustrationen, Diagramme |
psigel | ZDB-138-AMS |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | American Mathematical Society |
record_format | marc |
series | Mathematical surveys and monographs |
series2 | Mathematical surveys and monographs |
spelling | Dehornoy, Patrick 1952-2019 Verfasser (DE-588)113599625 aut Why Are Braids Orderable? Ordering braids Patrick Dehornoy with Ivan Dynnikov, Dale Rolfsen, Bert Wiest Providence, Rhode Island American Mathematical Society [2008] © 2008 1 Online-Ressource (ix, 323 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Mathematical surveys and monographs Volume 148 Auf der Rückseite des Titelblatts: "The original edition of this work was published under the title "Why are braids orderable?" by Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, 2002, by the Société Mathématique de France, Paris, France. Braid theory Linear orderings Zopfgruppe (DE-588)4225944-7 gnd rswk-swf Lineare Ordnung (DE-588)4167706-7 gnd rswk-swf Zopfgruppe (DE-588)4225944-7 s Lineare Ordnung (DE-588)4167706-7 s DE-604 Dynnikov, Ivan 1971- Verfasser (DE-588)1173660313 aut Rolfsen, Dale Verfasser aut Wiest, Bert Verfasser aut Erscheint auch als Druck-Ausgabe 978-0-8218-4431-1 Vorangegangen ist Dehorney, Patrik Why are braids orderable? Paris : Société Mathématique de France, 2002 2-85629-135-X Mathematical surveys and monographs Volume 148 (DE-604)BV042339669 148 https://doi.org/10.1090/surv/148 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Dehornoy, Patrick 1952-2019 Dynnikov, Ivan 1971- Rolfsen, Dale Wiest, Bert Ordering braids Mathematical surveys and monographs Braid theory Linear orderings Zopfgruppe (DE-588)4225944-7 gnd Lineare Ordnung (DE-588)4167706-7 gnd |
subject_GND | (DE-588)4225944-7 (DE-588)4167706-7 |
title | Ordering braids |
title_alt | Why Are Braids Orderable? |
title_auth | Ordering braids |
title_exact_search | Ordering braids |
title_full | Ordering braids Patrick Dehornoy with Ivan Dynnikov, Dale Rolfsen, Bert Wiest |
title_fullStr | Ordering braids Patrick Dehornoy with Ivan Dynnikov, Dale Rolfsen, Bert Wiest |
title_full_unstemmed | Ordering braids Patrick Dehornoy with Ivan Dynnikov, Dale Rolfsen, Bert Wiest |
title_old | Dehorney, Patrik Why are braids orderable? |
title_short | Ordering braids |
title_sort | ordering braids |
topic | Braid theory Linear orderings Zopfgruppe (DE-588)4225944-7 gnd Lineare Ordnung (DE-588)4167706-7 gnd |
topic_facet | Braid theory Linear orderings Zopfgruppe Lineare Ordnung |
url | https://doi.org/10.1090/surv/148 |
volume_link | (DE-604)BV042339669 |
work_keys_str_mv | AT dehornoypatrick whyarebraidsorderable AT dynnikovivan whyarebraidsorderable AT rolfsendale whyarebraidsorderable AT wiestbert whyarebraidsorderable AT dehornoypatrick orderingbraids AT dynnikovivan orderingbraids AT rolfsendale orderingbraids AT wiestbert orderingbraids |