Predictive analytics and data mining: concepts and practice with RapidMiner
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam ; Boston ; Heidelberg ; London
Elsevier/Morgan Kaufmann
[2015]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 2. Auflage ist erschienen unter dem Titel 'Data science - concepts and practice'. |
Beschreibung: | XIX, 425 Seiten Illustrationen, Diagramme 24 cm |
ISBN: | 9780128014608 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042335166 | ||
003 | DE-604 | ||
005 | 20190108 | ||
007 | t | ||
008 | 150209s2015 a||| |||| 00||| eng d | ||
016 | 7 | |a 016931196 |2 DE-101 | |
020 | |a 9780128014608 |c pbk |9 978-0-12-801460-8 | ||
035 | |a (OCoLC)904783770 | ||
035 | |a (DE-599)BSZ424853124 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-473 |a DE-91G |a DE-525 |a DE-573 |a DE-N32 |a DE-B768 |a DE-92 |a DE-523 |a DE-M347 |a DE-N2 | ||
082 | 0 | |a 006.312 | |
084 | |a SK 850 |0 (DE-625)143263: |2 rvk | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
084 | |a ST 270 |0 (DE-625)143638: |2 rvk | ||
084 | |a DAT 307f |2 stub | ||
084 | |a DAT 620f |2 stub | ||
100 | 1 | |a Kotu, Vijay |e Verfasser |0 (DE-588)1068240024 |4 aut | |
245 | 1 | 0 | |a Predictive analytics and data mining |b concepts and practice with RapidMiner |c Vijay Kotu, Bala Deshpande (PhD) |
264 | 1 | |a Amsterdam ; Boston ; Heidelberg ; London |b Elsevier/Morgan Kaufmann |c [2015] | |
300 | |a XIX, 425 Seiten |b Illustrationen, Diagramme |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a 2. Auflage ist erschienen unter dem Titel 'Data science - concepts and practice'. | ||
630 | 0 | 4 | |a RapidMiner (Electronic resource) |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Wirtschaft | |
650 | 4 | |a Data mining | |
650 | 4 | |a Forecasting / Statistical methods | |
650 | 4 | |a Business / Data processing | |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prognoseverfahren |0 (DE-588)4358095-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a RapidMiner |0 (DE-588)7755007-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Prognoseverfahren |0 (DE-588)4358095-6 |D s |
689 | 0 | 1 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | 2 | |a RapidMiner |0 (DE-588)7755007-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Deshpande, Bala |e Verfasser |0 (DE-588)1068240210 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bamberg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027771810&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-027771810 |
Datensatz im Suchindex
_version_ | 1804152942674051072 |
---|---|
adam_text | Contents
FOREWORD
...............................................................................................
XI
PREFACE
..................................................................................................
XV
ACKNOWLEDGEMENTS
...........................................................................XIX
CHAPTER
1
Introduction
........................................................1
1.1
What Data Mining Is
...............................................................................2
1.2
What Data Mining Is Not
........................................................................5
1.3
The Case for Data Mining
......................................................................6
1.4
Types of Data Mining
..............................................................................8
1.5
Data Mining Algorithms
.......................................................................10
1.6
Roadmap for Upcoming Chapters
.......................................................11
CHAPTER
2
Data Mining Process
.........................................17
2.1
Prior Knowledge
..................................................................................19
2.2
Data Preparation
..................................................................................22
2.3
Modeling
..............................................................................................27
2.4
Application
...........................................................................................32
2.5
Knowledge
...........................................................................................34
CHAPTER
3
Data Exploration
...............................................37
3.1
Objectives of Data Exploration
.............................................................38
3.2
Data Sets
..............................................................................................38
3.3
Descriptive Statistics
...........................................................................41
3.4
Data Visualization
................................................................................46
3.5
Roadmap for Data Exploration
............................................................59
vii
Contents
CHAPTER
4
Classification
....................................................63
4.1
Decision Trees
......................................................................................
M
4.2
Rule Induction
......................................................................................88
4.3
k-Nearest Neighbors
...........................................................................99
4.4
Naïve
Bayesian
...................................................................................
Ш
4.5
Artificial Neural Networks
.................................................................124
4.6
Support Vector Machines
...................................................................134
4.7
Ensemble Learners
...........................................................................148
CHAPTER
5
Regression Methods
.......................................165
5.1
Linear Regression
..............................................................................167
5.2
Logistic Regression
...........................................................................180
CHAPTER
6
Association Analysis
.......................................195
6.1
Concepts of Mining Association Rules
..............................................197
6.2
Apriori
Algorithm
...............................................................................202
6.3
FP-Growth Algorithm
........................................................................206
WMr
Cl
ƒ
ІДиаісГІГід ми
.....
н
..........
ι
........
шиш
...........■.....
L
I
/
7.1
Types of Clustering Techniques
.........................................................219
7.2
k-Means Clustering
...........................................................................223
7.3
DBSCAN Clustering
...........................................................................234
7.4
Self-Organizing Maps
........................................................................242
CHAPTER
8
Model Evaluation
............................................257
8.1
Confusion Matrix (or Truth Table)
......................................................258
8.2
Receiver Operator Characteristic (ROC) Curves and
Area under the Curve (AUC)
.................................... 260
8.3
Lift Curves
........................................ 263
8.4
Evaluating the Predictions: Implementation
.....................................264
CHAPTER
9
Text Mining
.....................................................275
*.1 How Text Mining Works
...................... 277
9.2
Implementing Text Mining with Clustering and Classification
.11284
Contents
CHAPTER
10
Time Series Forecasting
..............................305
10.1
Data-Driven Approaches
...................................................................308
10.2
Model-Driven Forecasting Methods
..................................................313
CHAPTER
11
Anomaly Detection
.......................................329
11.1
Anomaly Detection Concepts
.............................................................329
11.2
Distance-Based Outlier Detection
.....................................................
ЗЗД
11.3
Density-Based Outlier Detection
.......................................................338
11.4
Local Outlier Factor
...........................................................................341
CHAPTER
12
Feature Selection
.........................................347
12.1
Classifying Feature Selection Methods
.............................................348
12.2
Principal Component Analysis
..........................................................
ЗД9
12.3
Information Theory-Based Filtering for Numeric Data
....................358
12.4
Chi-Square-Based Filtering for Categorical Data
.............................360
12.5
Wrapper-Type Feature Selection
.......................................................363
CHAPTER
13
Getting Started with RapidMiner
..................371
13.1
User Interface and Terminology
........................................................372
13.2
Data Importing and Exporting Tools
..................................................377
13.3
Data Visualization Tools
.....................................................................382
13.4
Data Transformation Tools
................................................................386
13.5
Sampling and Missing Value Tools
....................................................392
13.6
Optimization Tools
.............................................................................396
COMPARISON OF DATA MINING ALGORITHMS
.........................................407
INDEX
.....................................................................................................417
ABOUT THE AUTHORS
.............................................................................425
|
any_adam_object | 1 |
author | Kotu, Vijay Deshpande, Bala |
author_GND | (DE-588)1068240024 (DE-588)1068240210 |
author_facet | Kotu, Vijay Deshpande, Bala |
author_role | aut aut |
author_sort | Kotu, Vijay |
author_variant | v k vk b d bd |
building | Verbundindex |
bvnumber | BV042335166 |
classification_rvk | SK 850 ST 530 ST 270 |
classification_tum | DAT 307f DAT 620f |
ctrlnum | (OCoLC)904783770 (DE-599)BSZ424853124 |
dewey-full | 006.312 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.312 |
dewey-search | 006.312 |
dewey-sort | 16.312 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02232nam a2200529 c 4500</leader><controlfield tag="001">BV042335166</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190108 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">150209s2015 a||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">016931196</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128014608</subfield><subfield code="c">pbk</subfield><subfield code="9">978-0-12-801460-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)904783770</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ424853124</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-525</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-N32</subfield><subfield code="a">DE-B768</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-N2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.312</subfield><subfield code="2"></subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 850</subfield><subfield code="0">(DE-625)143263:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 270</subfield><subfield code="0">(DE-625)143638:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 307f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 620f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kotu, Vijay</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1068240024</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predictive analytics and data mining</subfield><subfield code="b">concepts and practice with RapidMiner</subfield><subfield code="c">Vijay Kotu, Bala Deshpande (PhD)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam ; Boston ; Heidelberg ; London</subfield><subfield code="b">Elsevier/Morgan Kaufmann</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 425 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2. Auflage ist erschienen unter dem Titel 'Data science - concepts and practice'.</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">RapidMiner (Electronic resource)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wirtschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forecasting / Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business / Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prognoseverfahren</subfield><subfield code="0">(DE-588)4358095-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">RapidMiner</subfield><subfield code="0">(DE-588)7755007-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Prognoseverfahren</subfield><subfield code="0">(DE-588)4358095-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">RapidMiner</subfield><subfield code="0">(DE-588)7755007-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deshpande, Bala</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1068240210</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027771810&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027771810</subfield></datafield></record></collection> |
id | DE-604.BV042335166 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:18:44Z |
institution | BVB |
isbn | 9780128014608 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027771810 |
oclc_num | 904783770 |
open_access_boolean | |
owner | DE-473 DE-BY-UBG DE-91G DE-BY-TUM DE-525 DE-573 DE-N32 DE-B768 DE-92 DE-523 DE-M347 DE-N2 |
owner_facet | DE-473 DE-BY-UBG DE-91G DE-BY-TUM DE-525 DE-573 DE-N32 DE-B768 DE-92 DE-523 DE-M347 DE-N2 |
physical | XIX, 425 Seiten Illustrationen, Diagramme 24 cm |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Elsevier/Morgan Kaufmann |
record_format | marc |
spelling | Kotu, Vijay Verfasser (DE-588)1068240024 aut Predictive analytics and data mining concepts and practice with RapidMiner Vijay Kotu, Bala Deshpande (PhD) Amsterdam ; Boston ; Heidelberg ; London Elsevier/Morgan Kaufmann [2015] XIX, 425 Seiten Illustrationen, Diagramme 24 cm txt rdacontent n rdamedia nc rdacarrier 2. Auflage ist erschienen unter dem Titel 'Data science - concepts and practice'. RapidMiner (Electronic resource) Datenverarbeitung Wirtschaft Data mining Forecasting / Statistical methods Business / Data processing Data Mining (DE-588)4428654-5 gnd rswk-swf Prognoseverfahren (DE-588)4358095-6 gnd rswk-swf RapidMiner (DE-588)7755007-9 gnd rswk-swf Prognoseverfahren (DE-588)4358095-6 s Data Mining (DE-588)4428654-5 s RapidMiner (DE-588)7755007-9 s DE-604 Deshpande, Bala Verfasser (DE-588)1068240210 aut Digitalisierung UB Bamberg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027771810&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kotu, Vijay Deshpande, Bala Predictive analytics and data mining concepts and practice with RapidMiner RapidMiner (Electronic resource) Datenverarbeitung Wirtschaft Data mining Forecasting / Statistical methods Business / Data processing Data Mining (DE-588)4428654-5 gnd Prognoseverfahren (DE-588)4358095-6 gnd RapidMiner (DE-588)7755007-9 gnd |
subject_GND | (DE-588)4428654-5 (DE-588)4358095-6 (DE-588)7755007-9 |
title | Predictive analytics and data mining concepts and practice with RapidMiner |
title_auth | Predictive analytics and data mining concepts and practice with RapidMiner |
title_exact_search | Predictive analytics and data mining concepts and practice with RapidMiner |
title_full | Predictive analytics and data mining concepts and practice with RapidMiner Vijay Kotu, Bala Deshpande (PhD) |
title_fullStr | Predictive analytics and data mining concepts and practice with RapidMiner Vijay Kotu, Bala Deshpande (PhD) |
title_full_unstemmed | Predictive analytics and data mining concepts and practice with RapidMiner Vijay Kotu, Bala Deshpande (PhD) |
title_short | Predictive analytics and data mining |
title_sort | predictive analytics and data mining concepts and practice with rapidminer |
title_sub | concepts and practice with RapidMiner |
topic | RapidMiner (Electronic resource) Datenverarbeitung Wirtschaft Data mining Forecasting / Statistical methods Business / Data processing Data Mining (DE-588)4428654-5 gnd Prognoseverfahren (DE-588)4358095-6 gnd RapidMiner (DE-588)7755007-9 gnd |
topic_facet | RapidMiner (Electronic resource) Datenverarbeitung Wirtschaft Data mining Forecasting / Statistical methods Business / Data processing Data Mining Prognoseverfahren RapidMiner |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027771810&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kotuvijay predictiveanalyticsanddataminingconceptsandpracticewithrapidminer AT deshpandebala predictiveanalyticsanddataminingconceptsandpracticewithrapidminer |