Analysis on real and complex manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
North-Holland
1985, ©1968
|
Schriftenreihe: | North-Holland mathematical library
v. 35 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Includes bibliographical references (pages 242-244) and index Chapter 1 presents theorems on differentiable functions often used in differential topology, such as the implicit function theorem, Sard's theorem and Whitney's approximation theorem. The next chapter is an introduction to real and complex manifolds. It contains an exposition of the theorem of Frobenius, the lemmata of Poincaré and Grothendieck with applications of Grothendieck's lemma to complex analysis, the imbedding theorem of Whitney and Thom's transversality theorem. Chapter 3 includes characterizations of linear differentiable operators, due to Peetre and Hormander. The inequalit |
Beschreibung: | 1 Online-Ressource (xiv, 246 pages) |
ISBN: | 9780080960227 0080960227 0444877762 9780444877765 128276991X 9781282769915 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042318080 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1985 |||| o||u| ||||||eng d | ||
020 | |a 9780080960227 |c electronic bk. |9 978-0-08-096022-7 | ||
020 | |a 0080960227 |c electronic bk. |9 0-08-096022-7 | ||
020 | |a 0444877762 |9 0-444-87776-2 | ||
020 | |a 9780444877765 |9 978-0-444-87776-5 | ||
020 | |a 128276991X |9 1-282-76991-X | ||
020 | |a 9781282769915 |9 978-1-282-76991-5 | ||
035 | |a (OCoLC)671655810 | ||
035 | |a (DE-599)BVBBV042318080 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-706 | ||
082 | 0 | |a 516.3/6 |2 22 | |
100 | 1 | |a Narasimhan, Raghavan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Analysis on real and complex manifolds |c R. Narasimhan |
264 | 1 | |a Amsterdam |b North-Holland |c 1985, ©1968 | |
300 | |a 1 Online-Ressource (xiv, 246 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a North-Holland mathematical library |v v. 35 | |
500 | |a Includes bibliographical references (pages 242-244) and index | ||
500 | |a Chapter 1 presents theorems on differentiable functions often used in differential topology, such as the implicit function theorem, Sard's theorem and Whitney's approximation theorem. The next chapter is an introduction to real and complex manifolds. It contains an exposition of the theorem of Frobenius, the lemmata of Poincaré and Grothendieck with applications of Grothendieck's lemma to complex analysis, the imbedding theorem of Whitney and Thom's transversality theorem. Chapter 3 includes characterizations of linear differentiable operators, due to Peetre and Hormander. The inequalit | ||
650 | 4 | |a Topological spaces: Complex manifolds & functions of several complex variables | |
650 | 4 | |a Topological spaces: Differentiable manifolds | |
650 | 4 | |a Mathematics | |
650 | 7 | |a MATHEMATICS / Geometry / Differential |2 bisacsh | |
650 | 7 | |a Complex manifolds |2 fast | |
650 | 7 | |a Differentiable manifolds |2 fast | |
650 | 7 | |a Differential operators |2 fast | |
650 | 7 | |a Variétés (mathématiques) |2 ram | |
650 | 7 | |a Algèbre |2 ram | |
650 | 7 | |a Opérateur différentiel |2 ram | |
650 | 7 | |a Variétés différentiables |2 ram | |
650 | 7 | |a Variétés complexes |2 ram | |
650 | 7 | |a Opérateurs différentiels |2 ram | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Differentiable manifolds | |
650 | 4 | |a Complex manifolds | |
650 | 4 | |a Differential operators | |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalanalysis |0 (DE-588)4018916-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialoperator |0 (DE-588)4012251-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 0 | 1 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 1 | 1 | |a Funktionalanalysis |0 (DE-588)4018916-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Differentialoperator |0 (DE-588)4012251-7 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444877765 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027755071 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152915212894208 |
---|---|
any_adam_object | |
author | Narasimhan, Raghavan |
author_facet | Narasimhan, Raghavan |
author_role | aut |
author_sort | Narasimhan, Raghavan |
author_variant | r n rn |
building | Verbundindex |
bvnumber | BV042318080 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (OCoLC)671655810 (DE-599)BVBBV042318080 |
dewey-full | 516.3/6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/6 |
dewey-search | 516.3/6 |
dewey-sort | 3516.3 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04164nmm a2200889zcb4500</leader><controlfield tag="001">BV042318080</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080960227</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-096022-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080960227</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-096022-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444877762</subfield><subfield code="9">0-444-87776-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444877765</subfield><subfield code="9">978-0-444-87776-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">128276991X</subfield><subfield code="9">1-282-76991-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282769915</subfield><subfield code="9">978-1-282-76991-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)671655810</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042318080</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/6</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Narasimhan, Raghavan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis on real and complex manifolds</subfield><subfield code="c">R. Narasimhan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1985, ©1968</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 246 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">North-Holland mathematical library</subfield><subfield code="v">v. 35</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 242-244) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 1 presents theorems on differentiable functions often used in differential topology, such as the implicit function theorem, Sard's theorem and Whitney's approximation theorem. The next chapter is an introduction to real and complex manifolds. It contains an exposition of the theorem of Frobenius, the lemmata of Poincaré and Grothendieck with applications of Grothendieck's lemma to complex analysis, the imbedding theorem of Whitney and Thom's transversality theorem. Chapter 3 includes characterizations of linear differentiable operators, due to Peetre and Hormander. The inequalit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological spaces: Complex manifolds & functions of several complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological spaces: Differentiable manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Differential</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Complex manifolds</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentiable manifolds</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential operators</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variétés (mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algèbre</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Opérateur différentiel</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variétés différentiables</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variétés complexes</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Opérateurs différentiels</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential operators</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444877765</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027755071</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042318080 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:18Z |
institution | BVB |
isbn | 9780080960227 0080960227 0444877762 9780444877765 128276991X 9781282769915 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027755071 |
oclc_num | 671655810 |
open_access_boolean | |
owner | DE-1046 DE-706 |
owner_facet | DE-1046 DE-706 |
physical | 1 Online-Ressource (xiv, 246 pages) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | North-Holland |
record_format | marc |
series2 | North-Holland mathematical library |
spelling | Narasimhan, Raghavan Verfasser aut Analysis on real and complex manifolds R. Narasimhan Amsterdam North-Holland 1985, ©1968 1 Online-Ressource (xiv, 246 pages) txt rdacontent c rdamedia cr rdacarrier North-Holland mathematical library v. 35 Includes bibliographical references (pages 242-244) and index Chapter 1 presents theorems on differentiable functions often used in differential topology, such as the implicit function theorem, Sard's theorem and Whitney's approximation theorem. The next chapter is an introduction to real and complex manifolds. It contains an exposition of the theorem of Frobenius, the lemmata of Poincaré and Grothendieck with applications of Grothendieck's lemma to complex analysis, the imbedding theorem of Whitney and Thom's transversality theorem. Chapter 3 includes characterizations of linear differentiable operators, due to Peetre and Hormander. The inequalit Topological spaces: Complex manifolds & functions of several complex variables Topological spaces: Differentiable manifolds Mathematics MATHEMATICS / Geometry / Differential bisacsh Complex manifolds fast Differentiable manifolds fast Differential operators fast Variétés (mathématiques) ram Algèbre ram Opérateur différentiel ram Variétés différentiables ram Variétés complexes ram Opérateurs différentiels ram Mathematik Differentiable manifolds Complex manifolds Differential operators Analysis (DE-588)4001865-9 gnd rswk-swf Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd rswk-swf Funktionalanalysis (DE-588)4018916-8 gnd rswk-swf Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Differentialoperator (DE-588)4012251-7 gnd rswk-swf Analysis (DE-588)4001865-9 s Mannigfaltigkeit (DE-588)4037379-4 s 1\p DE-604 Funktionalanalysis (DE-588)4018916-8 s 2\p DE-604 Komplexe Mannigfaltigkeit (DE-588)4031996-9 s 3\p DE-604 Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 s 4\p DE-604 Differentialoperator (DE-588)4012251-7 s 5\p DE-604 http://www.sciencedirect.com/science/book/9780444877765 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Narasimhan, Raghavan Analysis on real and complex manifolds Topological spaces: Complex manifolds & functions of several complex variables Topological spaces: Differentiable manifolds Mathematics MATHEMATICS / Geometry / Differential bisacsh Complex manifolds fast Differentiable manifolds fast Differential operators fast Variétés (mathématiques) ram Algèbre ram Opérateur différentiel ram Variétés différentiables ram Variétés complexes ram Opérateurs différentiels ram Mathematik Differentiable manifolds Complex manifolds Differential operators Analysis (DE-588)4001865-9 gnd Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd Funktionalanalysis (DE-588)4018916-8 gnd Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Differentialoperator (DE-588)4012251-7 gnd |
subject_GND | (DE-588)4001865-9 (DE-588)4031996-9 (DE-588)4018916-8 (DE-588)4012269-4 (DE-588)4037379-4 (DE-588)4012251-7 |
title | Analysis on real and complex manifolds |
title_auth | Analysis on real and complex manifolds |
title_exact_search | Analysis on real and complex manifolds |
title_full | Analysis on real and complex manifolds R. Narasimhan |
title_fullStr | Analysis on real and complex manifolds R. Narasimhan |
title_full_unstemmed | Analysis on real and complex manifolds R. Narasimhan |
title_short | Analysis on real and complex manifolds |
title_sort | analysis on real and complex manifolds |
topic | Topological spaces: Complex manifolds & functions of several complex variables Topological spaces: Differentiable manifolds Mathematics MATHEMATICS / Geometry / Differential bisacsh Complex manifolds fast Differentiable manifolds fast Differential operators fast Variétés (mathématiques) ram Algèbre ram Opérateur différentiel ram Variétés différentiables ram Variétés complexes ram Opérateurs différentiels ram Mathematik Differentiable manifolds Complex manifolds Differential operators Analysis (DE-588)4001865-9 gnd Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd Funktionalanalysis (DE-588)4018916-8 gnd Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Differentialoperator (DE-588)4012251-7 gnd |
topic_facet | Topological spaces: Complex manifolds & functions of several complex variables Topological spaces: Differentiable manifolds Mathematics MATHEMATICS / Geometry / Differential Complex manifolds Differentiable manifolds Differential operators Variétés (mathématiques) Algèbre Opérateur différentiel Variétés différentiables Variétés complexes Opérateurs différentiels Mathematik Analysis Komplexe Mannigfaltigkeit Funktionalanalysis Differenzierbare Mannigfaltigkeit Mannigfaltigkeit Differentialoperator |
url | http://www.sciencedirect.com/science/book/9780444877765 |
work_keys_str_mv | AT narasimhanraghavan analysisonrealandcomplexmanifolds |