Combinatorial set theory: partition relations for cardinals
Gespeichert in:
Bibliographische Detailangaben
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Amsterdam North-Holland Pub. Co. 1984
Schriftenreihe:Studies in logic and the foundations of mathematics v. 106
Schlagworte:
Online-Zugang:Volltext
Beschreibung:Includes indexes
This work presents the most important combinatorial ideas in partition calculus and discusses ordinary partition relations for cardinals without the assumption of the generalized continuum hypothesis. A separate section of the book describes the main partition symbols scattered in the literature. A chapter on the applications of the combinatorial methods in partition calculus includes a section on topology with Arhangel'skii's famous result that a first countable compact Hausdorff space has cardinality, at most continuum. Several sections on set mappings are included as well as an account of recent inequalities for cardinal powers that were obtained in the wake of Silver's breakthrough result saying that the continuum hypothesis can not first fail at a singular cardinal of uncountable cofinality
Includes bibliographical references (p. [335]-340)
Beschreibung:1 Online-Ressource (347 p.)
ISBN:9780444861573
0444861572
9780720407228
9780444537454
0444537457
9789780080969
1299773486
9781299773486

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen