Combinatorial set theory: partition relations for cardinals
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam
North-Holland Pub. Co.
1984
|
Schriftenreihe: | Studies in logic and the foundations of mathematics
v. 106 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Includes indexes This work presents the most important combinatorial ideas in partition calculus and discusses ordinary partition relations for cardinals without the assumption of the generalized continuum hypothesis. A separate section of the book describes the main partition symbols scattered in the literature. A chapter on the applications of the combinatorial methods in partition calculus includes a section on topology with Arhangel'skii's famous result that a first countable compact Hausdorff space has cardinality, at most continuum. Several sections on set mappings are included as well as an account of recent inequalities for cardinal powers that were obtained in the wake of Silver's breakthrough result saying that the continuum hypothesis can not first fail at a singular cardinal of uncountable cofinality Includes bibliographical references (p. [335]-340) |
Beschreibung: | 1 Online-Ressource (347 p.) |
ISBN: | 9780444861573 0444861572 9780720407228 9780444537454 0444537457 9789780080969 1299773486 9781299773486 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317867 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1984 |||| o||u| ||||||eng d | ||
020 | |a 9780444861573 |9 978-0-444-86157-3 | ||
020 | |a 0444861572 |9 0-444-86157-2 | ||
020 | |a 9780720407228 |9 978-0-7204-0722-8 | ||
020 | |a 9780444537454 |c electronic bk. |9 978-0-444-53745-4 | ||
020 | |a 0444537457 |c electronic bk. |9 0-444-53745-7 | ||
020 | |a 9789780080969 |9 978-978-008-096-9 | ||
020 | |a 1299773486 |c ebk |9 1-299-77348-6 | ||
020 | |a 9781299773486 |c ebk |9 978-1-299-77348-6 | ||
035 | |a (ZDB-33-EBS)ocn316571776 | ||
035 | |a (OCoLC)316571776 | ||
035 | |a (DE-599)BVBBV042317867 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 511.3/22 |2 22 | |
245 | 1 | 0 | |a Combinatorial set theory |b partition relations for cardinals |c Paul Erdős ... [et al.] |
264 | 1 | |a Amsterdam |b North-Holland Pub. Co. |c 1984 | |
300 | |a 1 Online-Ressource (347 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Studies in logic and the foundations of mathematics |v v. 106 | |
500 | |a Includes indexes | ||
500 | |a This work presents the most important combinatorial ideas in partition calculus and discusses ordinary partition relations for cardinals without the assumption of the generalized continuum hypothesis. A separate section of the book describes the main partition symbols scattered in the literature. A chapter on the applications of the combinatorial methods in partition calculus includes a section on topology with Arhangel'skii's famous result that a first countable compact Hausdorff space has cardinality, at most continuum. Several sections on set mappings are included as well as an account of recent inequalities for cardinal powers that were obtained in the wake of Silver's breakthrough result saying that the continuum hypothesis can not first fail at a singular cardinal of uncountable cofinality | ||
500 | |a Includes bibliographical references (p. [335]-340) | ||
650 | 4 | |a Combinatorial set theory | |
650 | 4 | |a Ensembles, Théorie combinatoire des | |
650 | 7 | |a Verzamelingen (wiskunde) |2 gtt | |
650 | 7 | |a Combinatieleer |2 gtt | |
650 | 7 | |a Partitie (wiskunde) |2 gtt | |
650 | 7 | |a Kardinaalgetallen |2 gtt | |
650 | 7 | |a Combinatorial set theory |2 fast | |
650 | 7 | |a MATHEMATICS / Set Theory |2 bisacsh | |
650 | 7 | |a Ensembles, Théorie combinatoire des |2 ram | |
650 | 7 | |a Kardinalzahl |2 swd | |
650 | 4 | |a Combinatorial set theory | |
650 | 0 | 7 | |a Partition |g Zahlentheorie |0 (DE-588)4212684-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kardinalzahl |0 (DE-588)4163318-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kombinatorik |0 (DE-588)4031824-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mengenlehre |0 (DE-588)4074715-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partition |g Zahlentheorie |0 (DE-588)4212684-8 |D s |
689 | 0 | 1 | |a Kardinalzahl |0 (DE-588)4163318-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Kombinatorik |0 (DE-588)4031824-2 |D s |
689 | 1 | 1 | |a Mengenlehre |0 (DE-588)4074715-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Erdős, Paul |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444861573 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754858 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152914777735168 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV042317867 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316571776 (OCoLC)316571776 (DE-599)BVBBV042317867 |
dewey-full | 511.3/22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/22 |
dewey-search | 511.3/22 |
dewey-sort | 3511.3 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03577nmm a2200733zcb4500</leader><controlfield tag="001">BV042317867</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1984 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444861573</subfield><subfield code="9">978-0-444-86157-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444861572</subfield><subfield code="9">0-444-86157-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780720407228</subfield><subfield code="9">978-0-7204-0722-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444537454</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-444-53745-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444537457</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-444-53745-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789780080969</subfield><subfield code="9">978-978-008-096-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299773486</subfield><subfield code="c">ebk</subfield><subfield code="9">1-299-77348-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299773486</subfield><subfield code="c">ebk</subfield><subfield code="9">978-1-299-77348-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316571776</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316571776</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317867</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/22</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combinatorial set theory</subfield><subfield code="b">partition relations for cardinals</subfield><subfield code="c">Paul Erdős ... [et al.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland Pub. Co.</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (347 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies in logic and the foundations of mathematics</subfield><subfield code="v">v. 106</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This work presents the most important combinatorial ideas in partition calculus and discusses ordinary partition relations for cardinals without the assumption of the generalized continuum hypothesis. A separate section of the book describes the main partition symbols scattered in the literature. A chapter on the applications of the combinatorial methods in partition calculus includes a section on topology with Arhangel'skii's famous result that a first countable compact Hausdorff space has cardinality, at most continuum. Several sections on set mappings are included as well as an account of recent inequalities for cardinal powers that were obtained in the wake of Silver's breakthrough result saying that the continuum hypothesis can not first fail at a singular cardinal of uncountable cofinality</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [335]-340)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial set theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensembles, Théorie combinatoire des</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Verzamelingen (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatieleer</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partitie (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kardinaalgetallen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatorial set theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Set Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ensembles, Théorie combinatoire des</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kardinalzahl</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial set theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partition</subfield><subfield code="g">Zahlentheorie</subfield><subfield code="0">(DE-588)4212684-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kardinalzahl</subfield><subfield code="0">(DE-588)4163318-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partition</subfield><subfield code="g">Zahlentheorie</subfield><subfield code="0">(DE-588)4212684-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kardinalzahl</subfield><subfield code="0">(DE-588)4163318-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mengenlehre</subfield><subfield code="0">(DE-588)4074715-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Erdős, Paul</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444861573</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754858</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317867 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:17Z |
institution | BVB |
isbn | 9780444861573 0444861572 9780720407228 9780444537454 0444537457 9789780080969 1299773486 9781299773486 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754858 |
oclc_num | 316571776 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (347 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | North-Holland Pub. Co. |
record_format | marc |
series2 | Studies in logic and the foundations of mathematics |
spelling | Combinatorial set theory partition relations for cardinals Paul Erdős ... [et al.] Amsterdam North-Holland Pub. Co. 1984 1 Online-Ressource (347 p.) txt rdacontent c rdamedia cr rdacarrier Studies in logic and the foundations of mathematics v. 106 Includes indexes This work presents the most important combinatorial ideas in partition calculus and discusses ordinary partition relations for cardinals without the assumption of the generalized continuum hypothesis. A separate section of the book describes the main partition symbols scattered in the literature. A chapter on the applications of the combinatorial methods in partition calculus includes a section on topology with Arhangel'skii's famous result that a first countable compact Hausdorff space has cardinality, at most continuum. Several sections on set mappings are included as well as an account of recent inequalities for cardinal powers that were obtained in the wake of Silver's breakthrough result saying that the continuum hypothesis can not first fail at a singular cardinal of uncountable cofinality Includes bibliographical references (p. [335]-340) Combinatorial set theory Ensembles, Théorie combinatoire des Verzamelingen (wiskunde) gtt Combinatieleer gtt Partitie (wiskunde) gtt Kardinaalgetallen gtt Combinatorial set theory fast MATHEMATICS / Set Theory bisacsh Ensembles, Théorie combinatoire des ram Kardinalzahl swd Partition Zahlentheorie (DE-588)4212684-8 gnd rswk-swf Kardinalzahl (DE-588)4163318-0 gnd rswk-swf Kombinatorik (DE-588)4031824-2 gnd rswk-swf Mengenlehre (DE-588)4074715-3 gnd rswk-swf Partition Zahlentheorie (DE-588)4212684-8 s Kardinalzahl (DE-588)4163318-0 s 1\p DE-604 Kombinatorik (DE-588)4031824-2 s Mengenlehre (DE-588)4074715-3 s 2\p DE-604 Erdős, Paul Sonstige oth http://www.sciencedirect.com/science/book/9780444861573 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Combinatorial set theory partition relations for cardinals Combinatorial set theory Ensembles, Théorie combinatoire des Verzamelingen (wiskunde) gtt Combinatieleer gtt Partitie (wiskunde) gtt Kardinaalgetallen gtt Combinatorial set theory fast MATHEMATICS / Set Theory bisacsh Ensembles, Théorie combinatoire des ram Kardinalzahl swd Partition Zahlentheorie (DE-588)4212684-8 gnd Kardinalzahl (DE-588)4163318-0 gnd Kombinatorik (DE-588)4031824-2 gnd Mengenlehre (DE-588)4074715-3 gnd |
subject_GND | (DE-588)4212684-8 (DE-588)4163318-0 (DE-588)4031824-2 (DE-588)4074715-3 |
title | Combinatorial set theory partition relations for cardinals |
title_auth | Combinatorial set theory partition relations for cardinals |
title_exact_search | Combinatorial set theory partition relations for cardinals |
title_full | Combinatorial set theory partition relations for cardinals Paul Erdős ... [et al.] |
title_fullStr | Combinatorial set theory partition relations for cardinals Paul Erdős ... [et al.] |
title_full_unstemmed | Combinatorial set theory partition relations for cardinals Paul Erdős ... [et al.] |
title_short | Combinatorial set theory |
title_sort | combinatorial set theory partition relations for cardinals |
title_sub | partition relations for cardinals |
topic | Combinatorial set theory Ensembles, Théorie combinatoire des Verzamelingen (wiskunde) gtt Combinatieleer gtt Partitie (wiskunde) gtt Kardinaalgetallen gtt Combinatorial set theory fast MATHEMATICS / Set Theory bisacsh Ensembles, Théorie combinatoire des ram Kardinalzahl swd Partition Zahlentheorie (DE-588)4212684-8 gnd Kardinalzahl (DE-588)4163318-0 gnd Kombinatorik (DE-588)4031824-2 gnd Mengenlehre (DE-588)4074715-3 gnd |
topic_facet | Combinatorial set theory Ensembles, Théorie combinatoire des Verzamelingen (wiskunde) Combinatieleer Partitie (wiskunde) Kardinaalgetallen MATHEMATICS / Set Theory Kardinalzahl Partition Zahlentheorie Kombinatorik Mengenlehre |
url | http://www.sciencedirect.com/science/book/9780444861573 |
work_keys_str_mv | AT erdospaul combinatorialsettheorypartitionrelationsforcardinals |