Introduction to operator theory and invariant subspaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
North-Holland
1988
|
Schriftenreihe: | North-Holland mathematical library
v. 42 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This monograph only requires of the reader a basic knowledge of classical analysis: measure theory, analytic functions, Hilbert spaces, functional analysis. The book is self-contained, except for a few technical tools, for which precise references are given. Part I starts with finite-dimensional spaces and general spectral theory. But very soon (Chapter III), new material is presented, leading to new directions for research. Open questions are mentioned here. Part II concerns compactness and its applications, not only spectral theory for compact operators (Invariant Subspaces and Lomonossov's Theorem) but also duality between the space of nuclear operators and the space of all operators on a Hilbert space, a result which is seldom presented. Part III contains Algebra Techniques: Gelfand's Theory, and application to Normal Operators. Here again, directions for research are indicated. Part IV deals with analytic functions, and contains a few new developments. A simplified, operator-oriented, version is presented. Part V presents dilations and extensions: Nagy-Foias dilation theory, and the author's work about C1-contractions. Part VI deals with the Invariant Subspace Problem, with positive results and counter-examples. In general, much new material is presented. On the Invariant Subspace Problem, the level of research is reached, both in the positive and negative directions Includes bibliographical references (p. [351]-358) |
Beschreibung: | 1 Online-Ressource (xiv, 358 p.) |
ISBN: | 9780444705211 044470521X |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317811 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1988 |||| o||u| ||||||eng d | ||
020 | |a 9780444705211 |9 978-0-444-70521-1 | ||
020 | |a 044470521X |9 0-444-70521-X | ||
035 | |a (ZDB-33-EBS)ocn316569215 | ||
035 | |a (OCoLC)316569215 | ||
035 | |a (DE-599)BVBBV042317811 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 515.7/24 |2 22 | |
100 | 1 | |a Beauzamy, Bernard |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to operator theory and invariant subspaces |c Bernard Beauzamy |
264 | 1 | |a Amsterdam |b North-Holland |c 1988 | |
300 | |a 1 Online-Ressource (xiv, 358 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a North-Holland mathematical library |v v. 42 | |
500 | |a This monograph only requires of the reader a basic knowledge of classical analysis: measure theory, analytic functions, Hilbert spaces, functional analysis. The book is self-contained, except for a few technical tools, for which precise references are given. Part I starts with finite-dimensional spaces and general spectral theory. But very soon (Chapter III), new material is presented, leading to new directions for research. Open questions are mentioned here. Part II concerns compactness and its applications, not only spectral theory for compact operators (Invariant Subspaces and Lomonossov's Theorem) but also duality between the space of nuclear operators and the space of all operators on a Hilbert space, a result which is seldom presented. Part III contains Algebra Techniques: Gelfand's Theory, and application to Normal Operators. Here again, directions for research are indicated. Part IV deals with analytic functions, and contains a few new developments. A simplified, operator-oriented, version is presented. Part V presents dilations and extensions: Nagy-Foias dilation theory, and the author's work about C1-contractions. Part VI deals with the Invariant Subspace Problem, with positive results and counter-examples. In general, much new material is presented. On the Invariant Subspace Problem, the level of research is reached, both in the positive and negative directions | ||
500 | |a Includes bibliographical references (p. [351]-358) | ||
650 | 7 | |a Opérateurs, Théorie des |2 ram | |
650 | 7 | |a Sous-espaces invariants |2 ram | |
650 | 7 | |a Invariant subspaces |2 fast | |
650 | 7 | |a Operator theory |2 fast | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Invariant subspaces | |
650 | 0 | 7 | |a Invarianter Unterraum |0 (DE-588)4162212-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operatortheorie |0 (DE-588)4075665-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Operatortheorie |0 (DE-588)4075665-8 |D s |
689 | 0 | 1 | |a Invarianter Unterraum |0 (DE-588)4162212-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444705211 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754802 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152914674974720 |
---|---|
any_adam_object | |
author | Beauzamy, Bernard |
author_facet | Beauzamy, Bernard |
author_role | aut |
author_sort | Beauzamy, Bernard |
author_variant | b b bb |
building | Verbundindex |
bvnumber | BV042317811 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316569215 (OCoLC)316569215 (DE-599)BVBBV042317811 |
dewey-full | 515.7/24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7/24 |
dewey-search | 515.7/24 |
dewey-sort | 3515.7 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03196nmm a2200517zcb4500</leader><controlfield tag="001">BV042317811</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444705211</subfield><subfield code="9">978-0-444-70521-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">044470521X</subfield><subfield code="9">0-444-70521-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316569215</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316569215</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317811</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7/24</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beauzamy, Bernard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to operator theory and invariant subspaces</subfield><subfield code="c">Bernard Beauzamy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 358 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">North-Holland mathematical library</subfield><subfield code="v">v. 42</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph only requires of the reader a basic knowledge of classical analysis: measure theory, analytic functions, Hilbert spaces, functional analysis. The book is self-contained, except for a few technical tools, for which precise references are given. Part I starts with finite-dimensional spaces and general spectral theory. But very soon (Chapter III), new material is presented, leading to new directions for research. Open questions are mentioned here. Part II concerns compactness and its applications, not only spectral theory for compact operators (Invariant Subspaces and Lomonossov's Theorem) but also duality between the space of nuclear operators and the space of all operators on a Hilbert space, a result which is seldom presented. Part III contains Algebra Techniques: Gelfand's Theory, and application to Normal Operators. Here again, directions for research are indicated. Part IV deals with analytic functions, and contains a few new developments. A simplified, operator-oriented, version is presented. Part V presents dilations and extensions: Nagy-Foias dilation theory, and the author's work about C1-contractions. Part VI deals with the Invariant Subspace Problem, with positive results and counter-examples. In general, much new material is presented. On the Invariant Subspace Problem, the level of research is reached, both in the positive and negative directions</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [351]-358)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Opérateurs, Théorie des</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sous-espaces invariants</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Invariant subspaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Operator theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariant subspaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Invarianter Unterraum</subfield><subfield code="0">(DE-588)4162212-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Invarianter Unterraum</subfield><subfield code="0">(DE-588)4162212-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444705211</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754802</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317811 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:17Z |
institution | BVB |
isbn | 9780444705211 044470521X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754802 |
oclc_num | 316569215 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xiv, 358 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | North-Holland |
record_format | marc |
series2 | North-Holland mathematical library |
spelling | Beauzamy, Bernard Verfasser aut Introduction to operator theory and invariant subspaces Bernard Beauzamy Amsterdam North-Holland 1988 1 Online-Ressource (xiv, 358 p.) txt rdacontent c rdamedia cr rdacarrier North-Holland mathematical library v. 42 This monograph only requires of the reader a basic knowledge of classical analysis: measure theory, analytic functions, Hilbert spaces, functional analysis. The book is self-contained, except for a few technical tools, for which precise references are given. Part I starts with finite-dimensional spaces and general spectral theory. But very soon (Chapter III), new material is presented, leading to new directions for research. Open questions are mentioned here. Part II concerns compactness and its applications, not only spectral theory for compact operators (Invariant Subspaces and Lomonossov's Theorem) but also duality between the space of nuclear operators and the space of all operators on a Hilbert space, a result which is seldom presented. Part III contains Algebra Techniques: Gelfand's Theory, and application to Normal Operators. Here again, directions for research are indicated. Part IV deals with analytic functions, and contains a few new developments. A simplified, operator-oriented, version is presented. Part V presents dilations and extensions: Nagy-Foias dilation theory, and the author's work about C1-contractions. Part VI deals with the Invariant Subspace Problem, with positive results and counter-examples. In general, much new material is presented. On the Invariant Subspace Problem, the level of research is reached, both in the positive and negative directions Includes bibliographical references (p. [351]-358) Opérateurs, Théorie des ram Sous-espaces invariants ram Invariant subspaces fast Operator theory fast Operator theory Invariant subspaces Invarianter Unterraum (DE-588)4162212-1 gnd rswk-swf Operatortheorie (DE-588)4075665-8 gnd rswk-swf Operatortheorie (DE-588)4075665-8 s Invarianter Unterraum (DE-588)4162212-1 s 1\p DE-604 http://www.sciencedirect.com/science/book/9780444705211 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Beauzamy, Bernard Introduction to operator theory and invariant subspaces Opérateurs, Théorie des ram Sous-espaces invariants ram Invariant subspaces fast Operator theory fast Operator theory Invariant subspaces Invarianter Unterraum (DE-588)4162212-1 gnd Operatortheorie (DE-588)4075665-8 gnd |
subject_GND | (DE-588)4162212-1 (DE-588)4075665-8 |
title | Introduction to operator theory and invariant subspaces |
title_auth | Introduction to operator theory and invariant subspaces |
title_exact_search | Introduction to operator theory and invariant subspaces |
title_full | Introduction to operator theory and invariant subspaces Bernard Beauzamy |
title_fullStr | Introduction to operator theory and invariant subspaces Bernard Beauzamy |
title_full_unstemmed | Introduction to operator theory and invariant subspaces Bernard Beauzamy |
title_short | Introduction to operator theory and invariant subspaces |
title_sort | introduction to operator theory and invariant subspaces |
topic | Opérateurs, Théorie des ram Sous-espaces invariants ram Invariant subspaces fast Operator theory fast Operator theory Invariant subspaces Invarianter Unterraum (DE-588)4162212-1 gnd Operatortheorie (DE-588)4075665-8 gnd |
topic_facet | Opérateurs, Théorie des Sous-espaces invariants Invariant subspaces Operator theory Invarianter Unterraum Operatortheorie |
url | http://www.sciencedirect.com/science/book/9780444705211 |
work_keys_str_mv | AT beauzamybernard introductiontooperatortheoryandinvariantsubspaces |