Intensional mathematics:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam
North-Holland
1985
|
Schriftenreihe: | Studies in logic and the foundations of mathematics
v. 113 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Cataloging based on CIP information ''Platonism and intuitionism are rival philosophies of Mathematics, the former holding that the subject matter of mathematics consists of abstract objects whose existence is independent of the mathematician, the latter that the subject matter consists of mental construction ... both views are implicitly opposed to materialistic accounts of mathematics which take the subject matter of mathematics to consist (in a direct way) of material objects ... '' FROM THE INTRODUCTION Among the aims of this book are: - The discussion of some important philosophical issues using the precision of mathematics. - The development of formal systems that contain both classical and constructive components. This allows the study of constructivity in otherwise classical contexts and represents the formalization of important intensional aspects of mathematical practice. - The direct formalization of intensional concepts (such as computability) in a mixed constructive/classical context Includes bibliographical references (p) |
Beschreibung: | 1 Online-Ressource (1 online resource) |
ISBN: | 9780444876324 0444876324 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317787 | ||
003 | DE-604 | ||
005 | 20240524 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1985 |||| o||u| ||||||eng d | ||
020 | |a 9780444876324 |9 978-0-444-87632-4 | ||
020 | |a 0444876324 |9 0-444-87632-4 | ||
035 | |a (ZDB-33-EBS)ocn316568617 | ||
035 | |a (OCoLC)316568617 | ||
035 | |a (DE-599)BVBBV042317787 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 511 |2 22 | |
245 | 1 | 0 | |a Intensional mathematics |c edited by Stewart Shapiro |
264 | 1 | |a Amsterdam |b North-Holland |c 1985 | |
300 | |a 1 Online-Ressource (1 online resource) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Studies in logic and the foundations of mathematics |v v. 113 | |
500 | |a Cataloging based on CIP information | ||
500 | |a ''Platonism and intuitionism are rival philosophies of Mathematics, the former holding that the subject matter of mathematics consists of abstract objects whose existence is independent of the mathematician, the latter that the subject matter consists of mental construction ... both views are implicitly opposed to materialistic accounts of mathematics which take the subject matter of mathematics to consist (in a direct way) of material objects ... '' FROM THE INTRODUCTION Among the aims of this book are: - The discussion of some important philosophical issues using the precision of mathematics. - The development of formal systems that contain both classical and constructive components. This allows the study of constructivity in otherwise classical contexts and represents the formalization of important intensional aspects of mathematical practice. - The direct formalization of intensional concepts (such as computability) in a mixed constructive/classical context | ||
500 | |a Includes bibliographical references (p) | ||
650 | 4 | |a Modalité (Logique) | |
650 | 4 | |a Mathématiques constructives | |
650 | 4 | |a Mathématiques intuitionnistes | |
650 | 7 | |a Constructive mathematics |2 fast | |
650 | 7 | |a Intuitionistic mathematics |2 fast | |
650 | 7 | |a Modality (Logic) |2 fast | |
650 | 4 | |a Modality (Logic) | |
650 | 4 | |a Constructive mathematics | |
650 | 4 | |a Intuitionistic mathematics | |
650 | 0 | 7 | |a Konstruktive Mathematik |0 (DE-588)4165105-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Intensionale Logik |0 (DE-588)4161959-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Intuitionistische Mathematik |0 (DE-588)4162200-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Intensionale Logik |0 (DE-588)4161959-6 |D s |
689 | 0 | 1 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Konstruktive Mathematik |0 (DE-588)4165105-4 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Intuitionistische Mathematik |0 (DE-588)4162200-5 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
700 | 1 | |a Shapiro, Stewart |d 1951- |e Sonstige |0 (DE-588)131540564 |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444876324 |x Verlag |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD |
Datensatz im Suchindex
_version_ | 1805073479900332032 |
---|---|
adam_text | |
any_adam_object | |
author_GND | (DE-588)131540564 |
building | Verbundindex |
bvnumber | BV042317787 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316568617 (OCoLC)316568617 (DE-599)BVBBV042317787 |
dewey-full | 511 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511 |
dewey-search | 511 |
dewey-sort | 3511 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV042317787</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240524</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444876324</subfield><subfield code="9">978-0-444-87632-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444876324</subfield><subfield code="9">0-444-87632-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316568617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316568617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317787</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intensional mathematics</subfield><subfield code="c">edited by Stewart Shapiro</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 online resource)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies in logic and the foundations of mathematics</subfield><subfield code="v">v. 113</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cataloging based on CIP information</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">''Platonism and intuitionism are rival philosophies of Mathematics, the former holding that the subject matter of mathematics consists of abstract objects whose existence is independent of the mathematician, the latter that the subject matter consists of mental construction ... both views are implicitly opposed to materialistic accounts of mathematics which take the subject matter of mathematics to consist (in a direct way) of material objects ... '' FROM THE INTRODUCTION Among the aims of this book are: - The discussion of some important philosophical issues using the precision of mathematics. - The development of formal systems that contain both classical and constructive components. This allows the study of constructivity in otherwise classical contexts and represents the formalization of important intensional aspects of mathematical practice. - The direct formalization of intensional concepts (such as computability) in a mixed constructive/classical context</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modalité (Logique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathématiques constructives</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathématiques intuitionnistes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Constructive mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Intuitionistic mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modality (Logic)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modality (Logic)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constructive mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intuitionistic mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konstruktive Mathematik</subfield><subfield code="0">(DE-588)4165105-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Intensionale Logik</subfield><subfield code="0">(DE-588)4161959-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Intuitionistische Mathematik</subfield><subfield code="0">(DE-588)4162200-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Intensionale Logik</subfield><subfield code="0">(DE-588)4161959-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Konstruktive Mathematik</subfield><subfield code="0">(DE-588)4165105-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Intuitionistische Mathematik</subfield><subfield code="0">(DE-588)4162200-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shapiro, Stewart</subfield><subfield code="d">1951-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)131540564</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444876324</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042317787 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T05:10:16Z |
institution | BVB |
isbn | 9780444876324 0444876324 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754778 |
oclc_num | 316568617 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (1 online resource) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | North-Holland |
record_format | marc |
series2 | Studies in logic and the foundations of mathematics |
spelling | Intensional mathematics edited by Stewart Shapiro Amsterdam North-Holland 1985 1 Online-Ressource (1 online resource) txt rdacontent c rdamedia cr rdacarrier Studies in logic and the foundations of mathematics v. 113 Cataloging based on CIP information ''Platonism and intuitionism are rival philosophies of Mathematics, the former holding that the subject matter of mathematics consists of abstract objects whose existence is independent of the mathematician, the latter that the subject matter consists of mental construction ... both views are implicitly opposed to materialistic accounts of mathematics which take the subject matter of mathematics to consist (in a direct way) of material objects ... '' FROM THE INTRODUCTION Among the aims of this book are: - The discussion of some important philosophical issues using the precision of mathematics. - The development of formal systems that contain both classical and constructive components. This allows the study of constructivity in otherwise classical contexts and represents the formalization of important intensional aspects of mathematical practice. - The direct formalization of intensional concepts (such as computability) in a mixed constructive/classical context Includes bibliographical references (p) Modalité (Logique) Mathématiques constructives Mathématiques intuitionnistes Constructive mathematics fast Intuitionistic mathematics fast Modality (Logic) fast Modality (Logic) Constructive mathematics Intuitionistic mathematics Konstruktive Mathematik (DE-588)4165105-4 gnd rswk-swf Intensionale Logik (DE-588)4161959-6 gnd rswk-swf Intuitionistische Mathematik (DE-588)4162200-5 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Intensionale Logik (DE-588)4161959-6 s Mathematik (DE-588)4037944-9 s 2\p DE-604 Konstruktive Mathematik (DE-588)4165105-4 s 3\p DE-604 Intuitionistische Mathematik (DE-588)4162200-5 s 4\p DE-604 Shapiro, Stewart 1951- Sonstige (DE-588)131540564 oth http://www.sciencedirect.com/science/book/9780444876324 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Intensional mathematics Modalité (Logique) Mathématiques constructives Mathématiques intuitionnistes Constructive mathematics fast Intuitionistic mathematics fast Modality (Logic) fast Modality (Logic) Constructive mathematics Intuitionistic mathematics Konstruktive Mathematik (DE-588)4165105-4 gnd Intensionale Logik (DE-588)4161959-6 gnd Intuitionistische Mathematik (DE-588)4162200-5 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4165105-4 (DE-588)4161959-6 (DE-588)4162200-5 (DE-588)4037944-9 (DE-588)4143413-4 |
title | Intensional mathematics |
title_auth | Intensional mathematics |
title_exact_search | Intensional mathematics |
title_full | Intensional mathematics edited by Stewart Shapiro |
title_fullStr | Intensional mathematics edited by Stewart Shapiro |
title_full_unstemmed | Intensional mathematics edited by Stewart Shapiro |
title_short | Intensional mathematics |
title_sort | intensional mathematics |
topic | Modalité (Logique) Mathématiques constructives Mathématiques intuitionnistes Constructive mathematics fast Intuitionistic mathematics fast Modality (Logic) fast Modality (Logic) Constructive mathematics Intuitionistic mathematics Konstruktive Mathematik (DE-588)4165105-4 gnd Intensionale Logik (DE-588)4161959-6 gnd Intuitionistische Mathematik (DE-588)4162200-5 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | Modalité (Logique) Mathématiques constructives Mathématiques intuitionnistes Constructive mathematics Intuitionistic mathematics Modality (Logic) Konstruktive Mathematik Intensionale Logik Intuitionistische Mathematik Mathematik Aufsatzsammlung |
url | http://www.sciencedirect.com/science/book/9780444876324 |
work_keys_str_mv | AT shapirostewart intensionalmathematics |