Semi-Riemannian geometry: with applications to relativity
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York
Academic Press
1983
|
Schriftenreihe: | Pure and applied mathematics (Academic Press)
103 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest Includes bibliographical references (p. 456-457) and index |
Beschreibung: | 1 Online-Ressource (xiii, 468 p.) |
ISBN: | 9780125267403 0125267401 9780080570570 0080570577 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317774 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1983 |||| o||u| ||||||eng d | ||
020 | |a 9780125267403 |9 978-0-12-526740-3 | ||
020 | |a 0125267401 |9 0-12-526740-1 | ||
020 | |a 9780080570570 |c electronic bk. |9 978-0-08-057057-0 | ||
020 | |a 0080570577 |c electronic bk. |9 0-08-057057-7 | ||
035 | |a (ZDB-33-EBS)ocn316568577 | ||
035 | |a (OCoLC)316568577 | ||
035 | |a (DE-599)BVBBV042317774 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 516.3/73 |2 22 | |
100 | 1 | |a O'Neill, Barrett |e Verfasser |4 aut | |
245 | 1 | 0 | |a Semi-Riemannian geometry |b with applications to relativity |c Barrett O'Neill |
264 | 1 | |a New York |b Academic Press |c 1983 | |
300 | |a 1 Online-Ressource (xiii, 468 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Pure and applied mathematics (Academic Press) |v 103 | |
500 | |a This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest | ||
500 | |a Includes bibliographical references (p. 456-457) and index | ||
650 | 4 | |a Topological spaces: Riemannian manifolds | |
650 | 4 | |a Riemann, Géométrie de | |
650 | 4 | |a Variétés (Mathématiques) | |
650 | 4 | |a Calcul tensoriel | |
650 | 4 | |a Relativité (Physique) | |
650 | 7 | |a Riemann-vlakken |2 gtt | |
650 | 7 | |a Tensoren |2 gtt | |
650 | 7 | |a Relativiteitstheorie |2 gtt | |
650 | 7 | |a Manifolds |2 gtt | |
650 | 7 | |a Geometria |2 larpcal | |
650 | 7 | |a Calculus of tensors |2 fast | |
650 | 7 | |a Geometry, Riemannian |2 fast | |
650 | 7 | |a Manifolds (Mathematics) |2 fast | |
650 | 7 | |a Relativity (Physics) |2 fast | |
650 | 7 | |a MATHEMATICS / Pre-Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Reference |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Essays |2 bisacsh | |
650 | 4 | |a Geometry, Riemannian | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Calculus of tensors | |
650 | 4 | |a Relativity (Physics) | |
650 | 0 | 7 | |a Relativitätstheorie |0 (DE-588)4049363-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pseudo-Riemannscher Raum |0 (DE-588)4176163-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Pseudo-Riemannscher Raum |0 (DE-588)4176163-7 |D s |
689 | 0 | 1 | |a Relativitätstheorie |0 (DE-588)4049363-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780125267403 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754765 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152914587942912 |
---|---|
any_adam_object | |
author | O'Neill, Barrett |
author_facet | O'Neill, Barrett |
author_role | aut |
author_sort | O'Neill, Barrett |
author_variant | b o bo |
building | Verbundindex |
bvnumber | BV042317774 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316568577 (OCoLC)316568577 (DE-599)BVBBV042317774 |
dewey-full | 516.3/73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/73 |
dewey-search | 516.3/73 |
dewey-sort | 3516.3 273 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03290nmm a2200721zcb4500</leader><controlfield tag="001">BV042317774</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1983 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780125267403</subfield><subfield code="9">978-0-12-526740-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0125267401</subfield><subfield code="9">0-12-526740-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080570570</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-057057-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080570577</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-057057-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316568577</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316568577</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317774</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/73</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">O'Neill, Barrett</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Semi-Riemannian geometry</subfield><subfield code="b">with applications to relativity</subfield><subfield code="c">Barrett O'Neill</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Academic Press</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 468 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Pure and applied mathematics (Academic Press)</subfield><subfield code="v">103</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 456-457) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological spaces: Riemannian manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann, Géométrie de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variétés (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calcul tensoriel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relativité (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemann-vlakken</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tensoren</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Relativiteitstheorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometria</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calculus of tensors</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Riemannian</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Relativity (Physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Pre-Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Reference</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Essays</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Riemannian</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of tensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relativity (Physics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Relativitätstheorie</subfield><subfield code="0">(DE-588)4049363-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pseudo-Riemannscher Raum</subfield><subfield code="0">(DE-588)4176163-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pseudo-Riemannscher Raum</subfield><subfield code="0">(DE-588)4176163-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Relativitätstheorie</subfield><subfield code="0">(DE-588)4049363-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780125267403</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754765</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317774 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:17Z |
institution | BVB |
isbn | 9780125267403 0125267401 9780080570570 0080570577 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754765 |
oclc_num | 316568577 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xiii, 468 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Academic Press |
record_format | marc |
series2 | Pure and applied mathematics (Academic Press) |
spelling | O'Neill, Barrett Verfasser aut Semi-Riemannian geometry with applications to relativity Barrett O'Neill New York Academic Press 1983 1 Online-Ressource (xiii, 468 p.) txt rdacontent c rdamedia cr rdacarrier Pure and applied mathematics (Academic Press) 103 This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest Includes bibliographical references (p. 456-457) and index Topological spaces: Riemannian manifolds Riemann, Géométrie de Variétés (Mathématiques) Calcul tensoriel Relativité (Physique) Riemann-vlakken gtt Tensoren gtt Relativiteitstheorie gtt Manifolds gtt Geometria larpcal Calculus of tensors fast Geometry, Riemannian fast Manifolds (Mathematics) fast Relativity (Physics) fast MATHEMATICS / Pre-Calculus bisacsh MATHEMATICS / Reference bisacsh MATHEMATICS / Essays bisacsh Geometry, Riemannian Manifolds (Mathematics) Calculus of tensors Relativity (Physics) Relativitätstheorie (DE-588)4049363-5 gnd rswk-swf Pseudo-Riemannscher Raum (DE-588)4176163-7 gnd rswk-swf Pseudo-Riemannscher Raum (DE-588)4176163-7 s Relativitätstheorie (DE-588)4049363-5 s 1\p DE-604 http://www.sciencedirect.com/science/book/9780125267403 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | O'Neill, Barrett Semi-Riemannian geometry with applications to relativity Topological spaces: Riemannian manifolds Riemann, Géométrie de Variétés (Mathématiques) Calcul tensoriel Relativité (Physique) Riemann-vlakken gtt Tensoren gtt Relativiteitstheorie gtt Manifolds gtt Geometria larpcal Calculus of tensors fast Geometry, Riemannian fast Manifolds (Mathematics) fast Relativity (Physics) fast MATHEMATICS / Pre-Calculus bisacsh MATHEMATICS / Reference bisacsh MATHEMATICS / Essays bisacsh Geometry, Riemannian Manifolds (Mathematics) Calculus of tensors Relativity (Physics) Relativitätstheorie (DE-588)4049363-5 gnd Pseudo-Riemannscher Raum (DE-588)4176163-7 gnd |
subject_GND | (DE-588)4049363-5 (DE-588)4176163-7 |
title | Semi-Riemannian geometry with applications to relativity |
title_auth | Semi-Riemannian geometry with applications to relativity |
title_exact_search | Semi-Riemannian geometry with applications to relativity |
title_full | Semi-Riemannian geometry with applications to relativity Barrett O'Neill |
title_fullStr | Semi-Riemannian geometry with applications to relativity Barrett O'Neill |
title_full_unstemmed | Semi-Riemannian geometry with applications to relativity Barrett O'Neill |
title_short | Semi-Riemannian geometry |
title_sort | semi riemannian geometry with applications to relativity |
title_sub | with applications to relativity |
topic | Topological spaces: Riemannian manifolds Riemann, Géométrie de Variétés (Mathématiques) Calcul tensoriel Relativité (Physique) Riemann-vlakken gtt Tensoren gtt Relativiteitstheorie gtt Manifolds gtt Geometria larpcal Calculus of tensors fast Geometry, Riemannian fast Manifolds (Mathematics) fast Relativity (Physics) fast MATHEMATICS / Pre-Calculus bisacsh MATHEMATICS / Reference bisacsh MATHEMATICS / Essays bisacsh Geometry, Riemannian Manifolds (Mathematics) Calculus of tensors Relativity (Physics) Relativitätstheorie (DE-588)4049363-5 gnd Pseudo-Riemannscher Raum (DE-588)4176163-7 gnd |
topic_facet | Topological spaces: Riemannian manifolds Riemann, Géométrie de Variétés (Mathématiques) Calcul tensoriel Relativité (Physique) Riemann-vlakken Tensoren Relativiteitstheorie Manifolds Geometria Calculus of tensors Geometry, Riemannian Manifolds (Mathematics) Relativity (Physics) MATHEMATICS / Pre-Calculus MATHEMATICS / Reference MATHEMATICS / Essays Relativitätstheorie Pseudo-Riemannscher Raum |
url | http://www.sciencedirect.com/science/book/9780125267403 |
work_keys_str_mv | AT oneillbarrett semiriemanniangeometrywithapplicationstorelativity |