Solution of continuous nonlinear PDEs through order completion:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
North-Holland
1994
|
Schriftenreihe: | North-Holland mathematics studies
181 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This work inaugurates a new and general solution method for arbitrary continuous nonlinear PDEs. The solution method is based on Dedekind order completion of usual spaces of smooth functions defined on domains in Euclidean spaces. However, the nonlinear PDEs dealt with need not satisfy any kind of monotonicity properties. Moreover, the solution method is completely type independent. In other words, it does not assume anything about the nonlinear PDEs, except for the continuity of their left hand term, which includes the unkown function. Furthermore the right hand term of such nonlinear PDEs can in fact be given any discontinuous and measurable function Includes bibliographical references (p. 421-428) and index |
Beschreibung: | 1 Online-Ressource (xvi, 432 p.) |
ISBN: | 9780444820358 0444820353 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317767 | ||
003 | DE-604 | ||
005 | 20190814 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1994 |||| o||u| ||||||eng d | ||
020 | |a 9780444820358 |9 978-0-444-82035-8 | ||
020 | |a 0444820353 |9 0-444-82035-3 | ||
035 | |a (ZDB-33-EBS)ocn316568562 | ||
035 | |a (OCoLC)316568562 | ||
035 | |a (DE-599)BVBBV042317767 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 515/.353 |2 22 | |
100 | 1 | |a Oberguggenberger, Michael |d 1953- |e Verfasser |0 (DE-588)131514938 |4 aut | |
245 | 1 | 0 | |a Solution of continuous nonlinear PDEs through order completion |c Michael B. Oberguggenberger, Elemér E. Rosinger |
264 | 1 | |a Amsterdam |b North-Holland |c 1994 | |
300 | |a 1 Online-Ressource (xvi, 432 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a North-Holland mathematics studies |v 181 | |
500 | |a This work inaugurates a new and general solution method for arbitrary continuous nonlinear PDEs. The solution method is based on Dedekind order completion of usual spaces of smooth functions defined on domains in Euclidean spaces. However, the nonlinear PDEs dealt with need not satisfy any kind of monotonicity properties. Moreover, the solution method is completely type independent. In other words, it does not assume anything about the nonlinear PDEs, except for the continuity of their left hand term, which includes the unkown function. Furthermore the right hand term of such nonlinear PDEs can in fact be given any discontinuous and measurable function | ||
500 | |a Includes bibliographical references (p. 421-428) and index | ||
650 | 7 | |a Partiële differentiaalvergelijkingen |2 gtt | |
650 | 7 | |a Niet-lineaire vergelijkingen |2 gtt | |
650 | 7 | |a Equations différentielles non linéaires / Solutions numériques |2 ram | |
650 | 7 | |a Differential equations, Nonlinear / Numerical solutions |2 fast | |
650 | 4 | |a Differential equations, Nonlinear |x Numerical solutions | |
650 | 0 | 7 | |a Nichtlineare partielle Differentialgleichung |0 (DE-588)4128900-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare partielle Differentialgleichung |0 (DE-588)4128900-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Rosinger, Elemer E. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444820358 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754758 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152914552291328 |
---|---|
any_adam_object | |
author | Oberguggenberger, Michael 1953- |
author_GND | (DE-588)131514938 |
author_facet | Oberguggenberger, Michael 1953- |
author_role | aut |
author_sort | Oberguggenberger, Michael 1953- |
author_variant | m o mo |
building | Verbundindex |
bvnumber | BV042317767 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316568562 (OCoLC)316568562 (DE-599)BVBBV042317767 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02622nmm a2200493zcb4500</leader><controlfield tag="001">BV042317767</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190814 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444820358</subfield><subfield code="9">978-0-444-82035-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444820353</subfield><subfield code="9">0-444-82035-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316568562</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316568562</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317767</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oberguggenberger, Michael</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131514938</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solution of continuous nonlinear PDEs through order completion</subfield><subfield code="c">Michael B. Oberguggenberger, Elemér E. Rosinger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 432 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">North-Holland mathematics studies</subfield><subfield code="v">181</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This work inaugurates a new and general solution method for arbitrary continuous nonlinear PDEs. The solution method is based on Dedekind order completion of usual spaces of smooth functions defined on domains in Euclidean spaces. However, the nonlinear PDEs dealt with need not satisfy any kind of monotonicity properties. Moreover, the solution method is completely type independent. In other words, it does not assume anything about the nonlinear PDEs, except for the continuity of their left hand term, which includes the unkown function. Furthermore the right hand term of such nonlinear PDEs can in fact be given any discontinuous and measurable function</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 421-428) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partiële differentiaalvergelijkingen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Niet-lineaire vergelijkingen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equations différentielles non linéaires / Solutions numériques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Nonlinear / Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Nonlinear</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4128900-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4128900-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rosinger, Elemer E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444820358</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754758</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317767 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:17Z |
institution | BVB |
isbn | 9780444820358 0444820353 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754758 |
oclc_num | 316568562 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xvi, 432 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | North-Holland |
record_format | marc |
series2 | North-Holland mathematics studies |
spelling | Oberguggenberger, Michael 1953- Verfasser (DE-588)131514938 aut Solution of continuous nonlinear PDEs through order completion Michael B. Oberguggenberger, Elemér E. Rosinger Amsterdam North-Holland 1994 1 Online-Ressource (xvi, 432 p.) txt rdacontent c rdamedia cr rdacarrier North-Holland mathematics studies 181 This work inaugurates a new and general solution method for arbitrary continuous nonlinear PDEs. The solution method is based on Dedekind order completion of usual spaces of smooth functions defined on domains in Euclidean spaces. However, the nonlinear PDEs dealt with need not satisfy any kind of monotonicity properties. Moreover, the solution method is completely type independent. In other words, it does not assume anything about the nonlinear PDEs, except for the continuity of their left hand term, which includes the unkown function. Furthermore the right hand term of such nonlinear PDEs can in fact be given any discontinuous and measurable function Includes bibliographical references (p. 421-428) and index Partiële differentiaalvergelijkingen gtt Niet-lineaire vergelijkingen gtt Equations différentielles non linéaires / Solutions numériques ram Differential equations, Nonlinear / Numerical solutions fast Differential equations, Nonlinear Numerical solutions Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd rswk-swf Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 s 1\p DE-604 Rosinger, Elemer E. Sonstige oth http://www.sciencedirect.com/science/book/9780444820358 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Oberguggenberger, Michael 1953- Solution of continuous nonlinear PDEs through order completion Partiële differentiaalvergelijkingen gtt Niet-lineaire vergelijkingen gtt Equations différentielles non linéaires / Solutions numériques ram Differential equations, Nonlinear / Numerical solutions fast Differential equations, Nonlinear Numerical solutions Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd |
subject_GND | (DE-588)4128900-6 |
title | Solution of continuous nonlinear PDEs through order completion |
title_auth | Solution of continuous nonlinear PDEs through order completion |
title_exact_search | Solution of continuous nonlinear PDEs through order completion |
title_full | Solution of continuous nonlinear PDEs through order completion Michael B. Oberguggenberger, Elemér E. Rosinger |
title_fullStr | Solution of continuous nonlinear PDEs through order completion Michael B. Oberguggenberger, Elemér E. Rosinger |
title_full_unstemmed | Solution of continuous nonlinear PDEs through order completion Michael B. Oberguggenberger, Elemér E. Rosinger |
title_short | Solution of continuous nonlinear PDEs through order completion |
title_sort | solution of continuous nonlinear pdes through order completion |
topic | Partiële differentiaalvergelijkingen gtt Niet-lineaire vergelijkingen gtt Equations différentielles non linéaires / Solutions numériques ram Differential equations, Nonlinear / Numerical solutions fast Differential equations, Nonlinear Numerical solutions Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd |
topic_facet | Partiële differentiaalvergelijkingen Niet-lineaire vergelijkingen Equations différentielles non linéaires / Solutions numériques Differential equations, Nonlinear / Numerical solutions Differential equations, Nonlinear Numerical solutions Nichtlineare partielle Differentialgleichung |
url | http://www.sciencedirect.com/science/book/9780444820358 |
work_keys_str_mv | AT oberguggenbergermichael solutionofcontinuousnonlinearpdesthroughordercompletion AT rosingerelemere solutionofcontinuousnonlinearpdesthroughordercompletion |