Probabilities and potential C: potential theory for discrete and continuous semigroups
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier
1988
|
Schriftenreihe: | North-Holland mathematics studies
151 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Translation of: Probabilités et potentiel C. This third volume of the monograph examines potential theory. The first chapter develops potential theory with respect to a single kernel (or discrete time semigroup). All the essential ideas of the theory are presented: excessive functions, reductions, sweeping, maximum principle. The second chapter begins with a study of the notion of reduction in the most general situation possible - the ''gambling house'' of Dubins and Savage. The beautiful results presented have never been made accessible to a wide public. These are then connected with the theory of sweeping with respect to a cone of continuous functions, and the integral representation in compact convex sets. The third chapter presents new or little-known results, with the aim of illustrating the effectiveness of capacitary methods in the most varied fields. The last two chapters are concerned with the theory of resolvents. The fourth and last part of the English edition will be devoted to the theory of Markov processes Includes bibliographical references (p. 387-407) and indexes |
Beschreibung: | 1 Online-Ressource (xiv, 416 p.) |
ISBN: | 9780444703866 0444703861 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317761 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1988 |||| o||u| ||||||eng d | ||
020 | |a 9780444703866 |9 978-0-444-70386-6 | ||
020 | |a 0444703861 |9 0-444-70386-1 | ||
035 | |a (ZDB-33-EBS)ocn316568556 | ||
035 | |a (OCoLC)316568556 | ||
035 | |a (DE-599)BVBBV042317761 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 519.2 |2 22 | |
100 | 1 | |a Dellacherie, Claude |e Verfasser |4 aut | |
245 | 1 | 0 | |a Probabilities and potential C |b potential theory for discrete and continuous semigroups |c Claude Dellacherie and Paul-André Meyer ; translated and prepared by J. Norris |
264 | 1 | |a Amsterdam |b Elsevier |c 1988 | |
300 | |a 1 Online-Ressource (xiv, 416 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a North-Holland mathematics studies |v 151 | |
500 | |a Translation of: Probabilités et potentiel C. | ||
500 | |a This third volume of the monograph examines potential theory. The first chapter develops potential theory with respect to a single kernel (or discrete time semigroup). All the essential ideas of the theory are presented: excessive functions, reductions, sweeping, maximum principle. The second chapter begins with a study of the notion of reduction in the most general situation possible - the ''gambling house'' of Dubins and Savage. The beautiful results presented have never been made accessible to a wide public. These are then connected with the theory of sweeping with respect to a cone of continuous functions, and the integral representation in compact convex sets. The third chapter presents new or little-known results, with the aim of illustrating the effectiveness of capacitary methods in the most varied fields. The last two chapters are concerned with the theory of resolvents. The fourth and last part of the English edition will be devoted to the theory of Markov processes | ||
500 | |a Includes bibliographical references (p. 387-407) and indexes | ||
650 | 7 | |a Potential theory (Mathematics) |2 fast | |
650 | 7 | |a Probabilities |2 fast | |
650 | 7 | |a Semigroups |2 fast | |
650 | 4 | |a Probabilities | |
650 | 4 | |a Potential theory (Mathematics) | |
650 | 4 | |a Semigroups | |
700 | 1 | |a Meyer, Paul André |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444703866 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754752 |
Datensatz im Suchindex
_version_ | 1804152914564874240 |
---|---|
any_adam_object | |
author | Dellacherie, Claude |
author_facet | Dellacherie, Claude |
author_role | aut |
author_sort | Dellacherie, Claude |
author_variant | c d cd |
building | Verbundindex |
bvnumber | BV042317761 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316568556 (OCoLC)316568556 (DE-599)BVBBV042317761 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02619nmm a2200469zcb4500</leader><controlfield tag="001">BV042317761</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444703866</subfield><subfield code="9">978-0-444-70386-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444703861</subfield><subfield code="9">0-444-70386-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316568556</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316568556</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317761</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dellacherie, Claude</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probabilities and potential C</subfield><subfield code="b">potential theory for discrete and continuous semigroups</subfield><subfield code="c">Claude Dellacherie and Paul-André Meyer ; translated and prepared by J. Norris</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 416 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">North-Holland mathematics studies</subfield><subfield code="v">151</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Translation of: Probabilités et potentiel C.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This third volume of the monograph examines potential theory. The first chapter develops potential theory with respect to a single kernel (or discrete time semigroup). All the essential ideas of the theory are presented: excessive functions, reductions, sweeping, maximum principle. The second chapter begins with a study of the notion of reduction in the most general situation possible - the ''gambling house'' of Dubins and Savage. The beautiful results presented have never been made accessible to a wide public. These are then connected with the theory of sweeping with respect to a cone of continuous functions, and the integral representation in compact convex sets. The third chapter presents new or little-known results, with the aim of illustrating the effectiveness of capacitary methods in the most varied fields. The last two chapters are concerned with the theory of resolvents. The fourth and last part of the English edition will be devoted to the theory of Markov processes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 387-407) and indexes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Potential theory (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Probabilities</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Semigroups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semigroups</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meyer, Paul André</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444703866</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754752</subfield></datafield></record></collection> |
id | DE-604.BV042317761 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:17Z |
institution | BVB |
isbn | 9780444703866 0444703861 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754752 |
oclc_num | 316568556 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xiv, 416 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Elsevier |
record_format | marc |
series2 | North-Holland mathematics studies |
spelling | Dellacherie, Claude Verfasser aut Probabilities and potential C potential theory for discrete and continuous semigroups Claude Dellacherie and Paul-André Meyer ; translated and prepared by J. Norris Amsterdam Elsevier 1988 1 Online-Ressource (xiv, 416 p.) txt rdacontent c rdamedia cr rdacarrier North-Holland mathematics studies 151 Translation of: Probabilités et potentiel C. This third volume of the monograph examines potential theory. The first chapter develops potential theory with respect to a single kernel (or discrete time semigroup). All the essential ideas of the theory are presented: excessive functions, reductions, sweeping, maximum principle. The second chapter begins with a study of the notion of reduction in the most general situation possible - the ''gambling house'' of Dubins and Savage. The beautiful results presented have never been made accessible to a wide public. These are then connected with the theory of sweeping with respect to a cone of continuous functions, and the integral representation in compact convex sets. The third chapter presents new or little-known results, with the aim of illustrating the effectiveness of capacitary methods in the most varied fields. The last two chapters are concerned with the theory of resolvents. The fourth and last part of the English edition will be devoted to the theory of Markov processes Includes bibliographical references (p. 387-407) and indexes Potential theory (Mathematics) fast Probabilities fast Semigroups fast Probabilities Potential theory (Mathematics) Semigroups Meyer, Paul André Sonstige oth http://www.sciencedirect.com/science/book/9780444703866 Verlag Volltext |
spellingShingle | Dellacherie, Claude Probabilities and potential C potential theory for discrete and continuous semigroups Potential theory (Mathematics) fast Probabilities fast Semigroups fast Probabilities Potential theory (Mathematics) Semigroups |
title | Probabilities and potential C potential theory for discrete and continuous semigroups |
title_auth | Probabilities and potential C potential theory for discrete and continuous semigroups |
title_exact_search | Probabilities and potential C potential theory for discrete and continuous semigroups |
title_full | Probabilities and potential C potential theory for discrete and continuous semigroups Claude Dellacherie and Paul-André Meyer ; translated and prepared by J. Norris |
title_fullStr | Probabilities and potential C potential theory for discrete and continuous semigroups Claude Dellacherie and Paul-André Meyer ; translated and prepared by J. Norris |
title_full_unstemmed | Probabilities and potential C potential theory for discrete and continuous semigroups Claude Dellacherie and Paul-André Meyer ; translated and prepared by J. Norris |
title_short | Probabilities and potential C |
title_sort | probabilities and potential c potential theory for discrete and continuous semigroups |
title_sub | potential theory for discrete and continuous semigroups |
topic | Potential theory (Mathematics) fast Probabilities fast Semigroups fast Probabilities Potential theory (Mathematics) Semigroups |
topic_facet | Potential theory (Mathematics) Probabilities Semigroups |
url | http://www.sciencedirect.com/science/book/9780444703866 |
work_keys_str_mv | AT dellacherieclaude probabilitiesandpotentialcpotentialtheoryfordiscreteandcontinuoussemigroups AT meyerpaulandre probabilitiesandpotentialcpotentialtheoryfordiscreteandcontinuoussemigroups |