Recursive functionals:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
North-Holland
1992
|
Schriftenreihe: | Studies in logic and the foundations of mathematics
v. 131 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This work is a self-contained elementary exposition of the theory of recursive functionals, that also includes a number of advanced results. Although aiming basically at a theory of higher order computability, attention is restricted to second order functionals, where the arguments are numerical functions and the values, when defined, are natural numbers. This theory is somewhat special, for to some extent it can be reduced to first order theory, but when properly extended and relativized it requires the full machinery of higher order computations. In the theory of recursive monotonic functionals the author formulates a reasonable notion of computation which provides the right frame for what appears to be a convincing form of the extended Church's thesis. At the same time, the theory provides sufficient room to formulate the classical results that are usually derived in terms of singular functionals. Presented are complete proofs of Gandy's selector theorem, Kleene's theorem on hyperarithmetical predicates, and Grilliot's theorem on effectively discontinuous functionals Includes bibliographical references (p. 265-267) and index |
Beschreibung: | 1 Online-Ressource (xii, 277 p.) |
ISBN: | 9780444894472 0444894470 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317662 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1992 |||| o||u| ||||||eng d | ||
020 | |a 9780444894472 |9 978-0-444-89447-2 | ||
020 | |a 0444894470 |9 0-444-89447-0 | ||
035 | |a (ZDB-33-EBS)ocn316566833 | ||
035 | |a (OCoLC)316566833 | ||
035 | |a (DE-599)BVBBV042317662 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 511.3/5 |2 22 | |
100 | 1 | |a Sanchis, Luis E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Recursive functionals |c Luis E. Sanchis |
264 | 1 | |a Amsterdam |b North-Holland |c 1992 | |
300 | |a 1 Online-Ressource (xii, 277 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Studies in logic and the foundations of mathematics |v v. 131 | |
500 | |a This work is a self-contained elementary exposition of the theory of recursive functionals, that also includes a number of advanced results. Although aiming basically at a theory of higher order computability, attention is restricted to second order functionals, where the arguments are numerical functions and the values, when defined, are natural numbers. This theory is somewhat special, for to some extent it can be reduced to first order theory, but when properly extended and relativized it requires the full machinery of higher order computations. In the theory of recursive monotonic functionals the author formulates a reasonable notion of computation which provides the right frame for what appears to be a convincing form of the extended Church's thesis. At the same time, the theory provides sufficient room to formulate the classical results that are usually derived in terms of singular functionals. Presented are complete proofs of Gandy's selector theorem, Kleene's theorem on hyperarithmetical predicates, and Grilliot's theorem on effectively discontinuous functionals | ||
500 | |a Includes bibliographical references (p. 265-267) and index | ||
650 | 4 | |a Fonctions récursives | |
650 | 7 | |a Fonctions récursives |2 ram | |
650 | 7 | |a Recursive functions |2 fast | |
650 | 4 | |a Recursive functions | |
650 | 0 | 7 | |a Funktional |0 (DE-588)4155667-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Rekursive Funktion |0 (DE-588)4138367-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Rekursionstheorie |0 (DE-588)4122329-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktional |0 (DE-588)4155667-7 |D s |
689 | 0 | 1 | |a Rekursionstheorie |0 (DE-588)4122329-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Rekursive Funktion |0 (DE-588)4138367-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444894472 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754653 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152914339430400 |
---|---|
any_adam_object | |
author | Sanchis, Luis E. |
author_facet | Sanchis, Luis E. |
author_role | aut |
author_sort | Sanchis, Luis E. |
author_variant | l e s le les |
building | Verbundindex |
bvnumber | BV042317662 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316566833 (OCoLC)316566833 (DE-599)BVBBV042317662 |
dewey-full | 511.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/5 |
dewey-search | 511.3/5 |
dewey-sort | 3511.3 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03018nmm a2200541zcb4500</leader><controlfield tag="001">BV042317662</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444894472</subfield><subfield code="9">978-0-444-89447-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444894470</subfield><subfield code="9">0-444-89447-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316566833</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316566833</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317662</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/5</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sanchis, Luis E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recursive functionals</subfield><subfield code="c">Luis E. Sanchis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 277 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies in logic and the foundations of mathematics</subfield><subfield code="v">v. 131</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This work is a self-contained elementary exposition of the theory of recursive functionals, that also includes a number of advanced results. Although aiming basically at a theory of higher order computability, attention is restricted to second order functionals, where the arguments are numerical functions and the values, when defined, are natural numbers. This theory is somewhat special, for to some extent it can be reduced to first order theory, but when properly extended and relativized it requires the full machinery of higher order computations. In the theory of recursive monotonic functionals the author formulates a reasonable notion of computation which provides the right frame for what appears to be a convincing form of the extended Church's thesis. At the same time, the theory provides sufficient room to formulate the classical results that are usually derived in terms of singular functionals. Presented are complete proofs of Gandy's selector theorem, Kleene's theorem on hyperarithmetical predicates, and Grilliot's theorem on effectively discontinuous functionals</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 265-267) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions récursives</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fonctions récursives</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Recursive functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recursive functions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktional</subfield><subfield code="0">(DE-588)4155667-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rekursive Funktion</subfield><subfield code="0">(DE-588)4138367-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rekursionstheorie</subfield><subfield code="0">(DE-588)4122329-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktional</subfield><subfield code="0">(DE-588)4155667-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Rekursionstheorie</subfield><subfield code="0">(DE-588)4122329-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Rekursive Funktion</subfield><subfield code="0">(DE-588)4138367-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444894472</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754653</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317662 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:17Z |
institution | BVB |
isbn | 9780444894472 0444894470 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754653 |
oclc_num | 316566833 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xii, 277 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | North-Holland |
record_format | marc |
series2 | Studies in logic and the foundations of mathematics |
spelling | Sanchis, Luis E. Verfasser aut Recursive functionals Luis E. Sanchis Amsterdam North-Holland 1992 1 Online-Ressource (xii, 277 p.) txt rdacontent c rdamedia cr rdacarrier Studies in logic and the foundations of mathematics v. 131 This work is a self-contained elementary exposition of the theory of recursive functionals, that also includes a number of advanced results. Although aiming basically at a theory of higher order computability, attention is restricted to second order functionals, where the arguments are numerical functions and the values, when defined, are natural numbers. This theory is somewhat special, for to some extent it can be reduced to first order theory, but when properly extended and relativized it requires the full machinery of higher order computations. In the theory of recursive monotonic functionals the author formulates a reasonable notion of computation which provides the right frame for what appears to be a convincing form of the extended Church's thesis. At the same time, the theory provides sufficient room to formulate the classical results that are usually derived in terms of singular functionals. Presented are complete proofs of Gandy's selector theorem, Kleene's theorem on hyperarithmetical predicates, and Grilliot's theorem on effectively discontinuous functionals Includes bibliographical references (p. 265-267) and index Fonctions récursives Fonctions récursives ram Recursive functions fast Recursive functions Funktional (DE-588)4155667-7 gnd rswk-swf Rekursive Funktion (DE-588)4138367-9 gnd rswk-swf Rekursionstheorie (DE-588)4122329-9 gnd rswk-swf Funktional (DE-588)4155667-7 s Rekursionstheorie (DE-588)4122329-9 s 1\p DE-604 Rekursive Funktion (DE-588)4138367-9 s 2\p DE-604 http://www.sciencedirect.com/science/book/9780444894472 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sanchis, Luis E. Recursive functionals Fonctions récursives Fonctions récursives ram Recursive functions fast Recursive functions Funktional (DE-588)4155667-7 gnd Rekursive Funktion (DE-588)4138367-9 gnd Rekursionstheorie (DE-588)4122329-9 gnd |
subject_GND | (DE-588)4155667-7 (DE-588)4138367-9 (DE-588)4122329-9 |
title | Recursive functionals |
title_auth | Recursive functionals |
title_exact_search | Recursive functionals |
title_full | Recursive functionals Luis E. Sanchis |
title_fullStr | Recursive functionals Luis E. Sanchis |
title_full_unstemmed | Recursive functionals Luis E. Sanchis |
title_short | Recursive functionals |
title_sort | recursive functionals |
topic | Fonctions récursives Fonctions récursives ram Recursive functions fast Recursive functions Funktional (DE-588)4155667-7 gnd Rekursive Funktion (DE-588)4138367-9 gnd Rekursionstheorie (DE-588)4122329-9 gnd |
topic_facet | Fonctions récursives Recursive functions Funktional Rekursive Funktion Rekursionstheorie |
url | http://www.sciencedirect.com/science/book/9780444894472 |
work_keys_str_mv | AT sanchisluise recursivefunctionals |