Differential manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston
Academic Press
c1993
|
Schriftenreihe: | Pure and applied mathematics (Academic Press)
138 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Differential Manifolds is a modern graduate-level introduction to the important field of differential topology. The concepts of differential topology lie at the heart of many mathematical disciplines such as differential geometry and the theory of lie groups. The book introduces both the h-cobordism theorem and the classification of differential structures on spheres. The presentation of a number of topics in a clear and simple fashion make this book an outstanding choice for a graduate course in differential topology as well as for individual study. Key Features * Presents the study and classification of smooth structures on manifolds * It begins with the elements of theory and concludes with an introduction to the method of surgery * Chapters 1-5 contain a detailed presentation of the foundations of differential topology--no knowledge of algebraic topology is required for this self-contained section * Chapters 6-8 begin by explaining the joining of manifolds along submanifolds, and ends with the proof of the h-cobordism theory * Chapter 9 presents the Pontriagrin construction, the principle link between differential topology and homotopy theory; The final chapter introduces the method of surgery and applies it to the classification of smooth structures on spheres Includes bibliographical references (p. 233-239) and index |
Beschreibung: | 1 Online-Ressource (xvi, 248 p.) |
ISBN: | 9780124218505 0124218504 9780080874586 0080874584 1281766542 9781281766540 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317651 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1993 |||| o||u| ||||||eng d | ||
020 | |a 9780124218505 |9 978-0-12-421850-5 | ||
020 | |a 0124218504 |9 0-12-421850-4 | ||
020 | |a 9780080874586 |c electronic bk. |9 978-0-08-087458-6 | ||
020 | |a 0080874584 |c electronic bk. |9 0-08-087458-4 | ||
020 | |a 1281766542 |9 1-281-76654-2 | ||
020 | |a 9781281766540 |9 978-1-281-76654-0 | ||
035 | |a (ZDB-33-EBS)ocn316566781 | ||
035 | |a (OCoLC)316566781 | ||
035 | |a (DE-599)BVBBV042317651 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 514/.3 |2 22 | |
100 | 1 | |a Kosinski, Antoni A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Differential manifolds |c Antoni A. Kosinski |
264 | 1 | |a Boston |b Academic Press |c c1993 | |
300 | |a 1 Online-Ressource (xvi, 248 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Pure and applied mathematics (Academic Press) |v 138 | |
500 | |a Differential Manifolds is a modern graduate-level introduction to the important field of differential topology. The concepts of differential topology lie at the heart of many mathematical disciplines such as differential geometry and the theory of lie groups. The book introduces both the h-cobordism theorem and the classification of differential structures on spheres. The presentation of a number of topics in a clear and simple fashion make this book an outstanding choice for a graduate course in differential topology as well as for individual study. Key Features * Presents the study and classification of smooth structures on manifolds * It begins with the elements of theory and concludes with an introduction to the method of surgery * Chapters 1-5 contain a detailed presentation of the foundations of differential topology--no knowledge of algebraic topology is required for this self-contained section * Chapters 6-8 begin by explaining the joining of manifolds along submanifolds, and ends with the proof of the h-cobordism theory * Chapter 9 presents the Pontriagrin construction, the principle link between differential topology and homotopy theory; The final chapter introduces the method of surgery and applies it to the classification of smooth structures on spheres | ||
500 | |a Includes bibliographical references (p. 233-239) and index | ||
650 | 4 | |a Topological spaces | |
650 | 4 | |a Variétés différentiables | |
650 | 7 | |a Differentiable manifolds |2 fast | |
650 | 7 | |a MATHEMATICS / Topology |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Pre-Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Reference |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Essays |2 bisacsh | |
650 | 4 | |a Differentiable manifolds | |
650 | 0 | 7 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialtopologie |0 (DE-588)4012255-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Differentialtopologie |0 (DE-588)4012255-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780124218505 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754642 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152914321604608 |
---|---|
any_adam_object | |
author | Kosinski, Antoni A. |
author_facet | Kosinski, Antoni A. |
author_role | aut |
author_sort | Kosinski, Antoni A. |
author_variant | a a k aa aak |
building | Verbundindex |
bvnumber | BV042317651 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316566781 (OCoLC)316566781 (DE-599)BVBBV042317651 |
dewey-full | 514/.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.3 |
dewey-search | 514/.3 |
dewey-sort | 3514 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03558nmm a2200613zcb4500</leader><controlfield tag="001">BV042317651</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780124218505</subfield><subfield code="9">978-0-12-421850-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0124218504</subfield><subfield code="9">0-12-421850-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080874586</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-087458-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080874584</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-087458-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281766542</subfield><subfield code="9">1-281-76654-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281766540</subfield><subfield code="9">978-1-281-76654-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316566781</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316566781</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317651</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kosinski, Antoni A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential manifolds</subfield><subfield code="c">Antoni A. Kosinski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston</subfield><subfield code="b">Academic Press</subfield><subfield code="c">c1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 248 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Pure and applied mathematics (Academic Press)</subfield><subfield code="v">138</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Differential Manifolds is a modern graduate-level introduction to the important field of differential topology. The concepts of differential topology lie at the heart of many mathematical disciplines such as differential geometry and the theory of lie groups. The book introduces both the h-cobordism theorem and the classification of differential structures on spheres. The presentation of a number of topics in a clear and simple fashion make this book an outstanding choice for a graduate course in differential topology as well as for individual study. Key Features * Presents the study and classification of smooth structures on manifolds * It begins with the elements of theory and concludes with an introduction to the method of surgery * Chapters 1-5 contain a detailed presentation of the foundations of differential topology--no knowledge of algebraic topology is required for this self-contained section * Chapters 6-8 begin by explaining the joining of manifolds along submanifolds, and ends with the proof of the h-cobordism theory * Chapter 9 presents the Pontriagrin construction, the principle link between differential topology and homotopy theory; The final chapter introduces the method of surgery and applies it to the classification of smooth structures on spheres</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 233-239) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variétés différentiables</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentiable manifolds</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Pre-Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Reference</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Essays</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable manifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialtopologie</subfield><subfield code="0">(DE-588)4012255-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Differentialtopologie</subfield><subfield code="0">(DE-588)4012255-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780124218505</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754642</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317651 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:17Z |
institution | BVB |
isbn | 9780124218505 0124218504 9780080874586 0080874584 1281766542 9781281766540 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754642 |
oclc_num | 316566781 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xvi, 248 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Academic Press |
record_format | marc |
series2 | Pure and applied mathematics (Academic Press) |
spelling | Kosinski, Antoni A. Verfasser aut Differential manifolds Antoni A. Kosinski Boston Academic Press c1993 1 Online-Ressource (xvi, 248 p.) txt rdacontent c rdamedia cr rdacarrier Pure and applied mathematics (Academic Press) 138 Differential Manifolds is a modern graduate-level introduction to the important field of differential topology. The concepts of differential topology lie at the heart of many mathematical disciplines such as differential geometry and the theory of lie groups. The book introduces both the h-cobordism theorem and the classification of differential structures on spheres. The presentation of a number of topics in a clear and simple fashion make this book an outstanding choice for a graduate course in differential topology as well as for individual study. Key Features * Presents the study and classification of smooth structures on manifolds * It begins with the elements of theory and concludes with an introduction to the method of surgery * Chapters 1-5 contain a detailed presentation of the foundations of differential topology--no knowledge of algebraic topology is required for this self-contained section * Chapters 6-8 begin by explaining the joining of manifolds along submanifolds, and ends with the proof of the h-cobordism theory * Chapter 9 presents the Pontriagrin construction, the principle link between differential topology and homotopy theory; The final chapter introduces the method of surgery and applies it to the classification of smooth structures on spheres Includes bibliographical references (p. 233-239) and index Topological spaces Variétés différentiables Differentiable manifolds fast MATHEMATICS / Topology bisacsh MATHEMATICS / Pre-Calculus bisacsh MATHEMATICS / Reference bisacsh MATHEMATICS / Essays bisacsh Differentiable manifolds Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd rswk-swf Differentialtopologie (DE-588)4012255-4 gnd rswk-swf Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 s 1\p DE-604 Differentialtopologie (DE-588)4012255-4 s 2\p DE-604 http://www.sciencedirect.com/science/book/9780124218505 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kosinski, Antoni A. Differential manifolds Topological spaces Variétés différentiables Differentiable manifolds fast MATHEMATICS / Topology bisacsh MATHEMATICS / Pre-Calculus bisacsh MATHEMATICS / Reference bisacsh MATHEMATICS / Essays bisacsh Differentiable manifolds Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd Differentialtopologie (DE-588)4012255-4 gnd |
subject_GND | (DE-588)4012269-4 (DE-588)4012255-4 |
title | Differential manifolds |
title_auth | Differential manifolds |
title_exact_search | Differential manifolds |
title_full | Differential manifolds Antoni A. Kosinski |
title_fullStr | Differential manifolds Antoni A. Kosinski |
title_full_unstemmed | Differential manifolds Antoni A. Kosinski |
title_short | Differential manifolds |
title_sort | differential manifolds |
topic | Topological spaces Variétés différentiables Differentiable manifolds fast MATHEMATICS / Topology bisacsh MATHEMATICS / Pre-Calculus bisacsh MATHEMATICS / Reference bisacsh MATHEMATICS / Essays bisacsh Differentiable manifolds Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd Differentialtopologie (DE-588)4012255-4 gnd |
topic_facet | Topological spaces Variétés différentiables Differentiable manifolds MATHEMATICS / Topology MATHEMATICS / Pre-Calculus MATHEMATICS / Reference MATHEMATICS / Essays Differenzierbare Mannigfaltigkeit Differentialtopologie |
url | http://www.sciencedirect.com/science/book/9780124218505 |
work_keys_str_mv | AT kosinskiantonia differentialmanifolds |