An introduction to differentiable manifolds and Riemannian geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Orlando
Academic Press
1986
|
Ausgabe: | 2nd ed |
Schriftenreihe: | Pure and applied mathematics (Academic Press)
120 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Includes bibliographical references (p. 417-422) and index This is a revised printing of one of the classic mathematics texts published in the last 25 years. This revised edition includes updated references and indexes and error corrections and will continue to serve as the standard text for students and professionals in the field. Differential manifolds are the underlying objects of study in much of advanced calculus and analysis. Topics such as line and surface integrals, divergence and curl of vector fields, and Stokeand#39;s and Greenand#39;s theorems find their most natural setting in manifold theory. Riemannian plane geometry can be visualized a |
Beschreibung: | 1 Online-Ressource (xvi, 430 p.) |
ISBN: | 9780121160524 0121160521 9780080874395 0080874398 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317643 | ||
003 | DE-604 | ||
005 | 20190619 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1986 |||| o||u| ||||||eng d | ||
020 | |a 9780121160524 |9 978-0-12-116052-4 | ||
020 | |a 0121160521 |9 0-12-116052-1 | ||
020 | |a 9780080874395 |c electronic bk. |9 978-0-08-087439-5 | ||
020 | |a 0080874398 |c electronic bk. |9 0-08-087439-8 | ||
035 | |a (ZDB-33-EBS)ocn316566770 | ||
035 | |a (OCoLC)316566770 | ||
035 | |a (DE-599)BVBBV042317643 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 516.3/6 |2 22 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Boothby, William M. |d 1918- |e Verfasser |0 (DE-588)171984412 |4 aut | |
245 | 1 | 0 | |a An introduction to differentiable manifolds and Riemannian geometry |c William M. Boothby |
250 | |a 2nd ed | ||
264 | 1 | |a Orlando |b Academic Press |c 1986 | |
300 | |a 1 Online-Ressource (xvi, 430 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Pure and applied mathematics (Academic Press) |v 120 | |
500 | |a Includes bibliographical references (p. 417-422) and index | ||
500 | |a This is a revised printing of one of the classic mathematics texts published in the last 25 years. This revised edition includes updated references and indexes and error corrections and will continue to serve as the standard text for students and professionals in the field. Differential manifolds are the underlying objects of study in much of advanced calculus and analysis. Topics such as line and surface integrals, divergence and curl of vector fields, and Stokeand#39;s and Greenand#39;s theorems find their most natural setting in manifold theory. Riemannian plane geometry can be visualized a | ||
650 | 4 | |a Variétés différentiables | |
650 | 4 | |a Riemann, Variétés de | |
650 | 7 | |a Manifolds |2 gtt | |
650 | 7 | |a Differentieerbaarheid |2 gtt | |
650 | 7 | |a Riemann-vlakken |2 gtt | |
650 | 7 | |a Differentiable manifolds |2 fast | |
650 | 7 | |a Riemannian manifolds |2 fast | |
650 | 7 | |a MATHEMATICS / Pre-Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Reference |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Essays |2 bisacsh | |
650 | 4 | |a Differentiable manifolds | |
650 | 4 | |a Riemannian manifolds | |
650 | 0 | 7 | |a Riemannscher Raum |0 (DE-588)4128295-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentiation |g Mathematik |0 (DE-588)4149787-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 1 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Riemannscher Raum |0 (DE-588)4128295-4 |D s |
689 | 1 | 1 | |a Differentiation |g Mathematik |0 (DE-588)4149787-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 0-12-116053-X |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780121160524 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754634 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152914282807296 |
---|---|
any_adam_object | |
author | Boothby, William M. 1918- |
author_GND | (DE-588)171984412 |
author_facet | Boothby, William M. 1918- |
author_role | aut |
author_sort | Boothby, William M. 1918- |
author_variant | w m b wm wmb |
building | Verbundindex |
bvnumber | BV042317643 |
classification_rvk | SK 350 SK 370 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316566770 (OCoLC)316566770 (DE-599)BVBBV042317643 |
dewey-full | 516.3/6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/6 |
dewey-search | 516.3/6 |
dewey-sort | 3516.3 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2nd ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03698nmm a2200781zcb4500</leader><controlfield tag="001">BV042317643</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190619 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1986 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780121160524</subfield><subfield code="9">978-0-12-116052-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0121160521</subfield><subfield code="9">0-12-116052-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080874395</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-087439-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080874398</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-087439-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316566770</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316566770</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317643</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/6</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Boothby, William M.</subfield><subfield code="d">1918-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)171984412</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to differentiable manifolds and Riemannian geometry</subfield><subfield code="c">William M. Boothby</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Orlando</subfield><subfield code="b">Academic Press</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 430 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Pure and applied mathematics (Academic Press)</subfield><subfield code="v">120</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 417-422) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is a revised printing of one of the classic mathematics texts published in the last 25 years. This revised edition includes updated references and indexes and error corrections and will continue to serve as the standard text for students and professionals in the field. Differential manifolds are the underlying objects of study in much of advanced calculus and analysis. Topics such as line and surface integrals, divergence and curl of vector fields, and Stokeand#39;s and Greenand#39;s theorems find their most natural setting in manifold theory. Riemannian plane geometry can be visualized a</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variétés différentiables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann, Variétés de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentieerbaarheid</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemann-vlakken</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentiable manifolds</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemannian manifolds</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Pre-Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Reference</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Essays</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemannian manifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentiation</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4149787-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Differentiation</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4149787-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">0-12-116053-X</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780121160524</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754634</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317643 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:17Z |
institution | BVB |
isbn | 9780121160524 0121160521 9780080874395 0080874398 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754634 |
oclc_num | 316566770 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xvi, 430 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Academic Press |
record_format | marc |
series2 | Pure and applied mathematics (Academic Press) |
spelling | Boothby, William M. 1918- Verfasser (DE-588)171984412 aut An introduction to differentiable manifolds and Riemannian geometry William M. Boothby 2nd ed Orlando Academic Press 1986 1 Online-Ressource (xvi, 430 p.) txt rdacontent c rdamedia cr rdacarrier Pure and applied mathematics (Academic Press) 120 Includes bibliographical references (p. 417-422) and index This is a revised printing of one of the classic mathematics texts published in the last 25 years. This revised edition includes updated references and indexes and error corrections and will continue to serve as the standard text for students and professionals in the field. Differential manifolds are the underlying objects of study in much of advanced calculus and analysis. Topics such as line and surface integrals, divergence and curl of vector fields, and Stokeand#39;s and Greenand#39;s theorems find their most natural setting in manifold theory. Riemannian plane geometry can be visualized a Variétés différentiables Riemann, Variétés de Manifolds gtt Differentieerbaarheid gtt Riemann-vlakken gtt Differentiable manifolds fast Riemannian manifolds fast MATHEMATICS / Pre-Calculus bisacsh MATHEMATICS / Reference bisacsh MATHEMATICS / Essays bisacsh Differentiable manifolds Riemannian manifolds Riemannscher Raum (DE-588)4128295-4 gnd rswk-swf Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Riemannsche Geometrie (DE-588)4128462-8 gnd rswk-swf Differentiation Mathematik (DE-588)4149787-9 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 s Riemannsche Geometrie (DE-588)4128462-8 s 1\p DE-604 Riemannscher Raum (DE-588)4128295-4 s Differentiation Mathematik (DE-588)4149787-9 s 2\p DE-604 Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 s 3\p DE-604 Erscheint auch als Druck-Ausgabe, Paperback 0-12-116053-X http://www.sciencedirect.com/science/book/9780121160524 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Boothby, William M. 1918- An introduction to differentiable manifolds and Riemannian geometry Variétés différentiables Riemann, Variétés de Manifolds gtt Differentieerbaarheid gtt Riemann-vlakken gtt Differentiable manifolds fast Riemannian manifolds fast MATHEMATICS / Pre-Calculus bisacsh MATHEMATICS / Reference bisacsh MATHEMATICS / Essays bisacsh Differentiable manifolds Riemannian manifolds Riemannscher Raum (DE-588)4128295-4 gnd Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Riemannsche Geometrie (DE-588)4128462-8 gnd Differentiation Mathematik (DE-588)4149787-9 gnd |
subject_GND | (DE-588)4128295-4 (DE-588)4012269-4 (DE-588)4037379-4 (DE-588)4128462-8 (DE-588)4149787-9 |
title | An introduction to differentiable manifolds and Riemannian geometry |
title_auth | An introduction to differentiable manifolds and Riemannian geometry |
title_exact_search | An introduction to differentiable manifolds and Riemannian geometry |
title_full | An introduction to differentiable manifolds and Riemannian geometry William M. Boothby |
title_fullStr | An introduction to differentiable manifolds and Riemannian geometry William M. Boothby |
title_full_unstemmed | An introduction to differentiable manifolds and Riemannian geometry William M. Boothby |
title_short | An introduction to differentiable manifolds and Riemannian geometry |
title_sort | an introduction to differentiable manifolds and riemannian geometry |
topic | Variétés différentiables Riemann, Variétés de Manifolds gtt Differentieerbaarheid gtt Riemann-vlakken gtt Differentiable manifolds fast Riemannian manifolds fast MATHEMATICS / Pre-Calculus bisacsh MATHEMATICS / Reference bisacsh MATHEMATICS / Essays bisacsh Differentiable manifolds Riemannian manifolds Riemannscher Raum (DE-588)4128295-4 gnd Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Riemannsche Geometrie (DE-588)4128462-8 gnd Differentiation Mathematik (DE-588)4149787-9 gnd |
topic_facet | Variétés différentiables Riemann, Variétés de Manifolds Differentieerbaarheid Riemann-vlakken Differentiable manifolds Riemannian manifolds MATHEMATICS / Pre-Calculus MATHEMATICS / Reference MATHEMATICS / Essays Riemannscher Raum Differenzierbare Mannigfaltigkeit Mannigfaltigkeit Riemannsche Geometrie Differentiation Mathematik |
url | http://www.sciencedirect.com/science/book/9780121160524 |
work_keys_str_mv | AT boothbywilliamm anintroductiontodifferentiablemanifoldsandriemanniangeometry |