Continuous linear representations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
North-Holland
1992
|
Schriftenreihe: | North-Holland mathematics studies
168 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This monograph gives access to the theory of continuous linear representations of general real Lie groups to readers who are already familiar with the rudiments of functional analysis and Lie groups. The first half of the book is centered around the relation between a continuous linear representation (of a Lie group over a Banach space or even a more general space) and its tangent; the latter is a Lie algebra representation in a sense. Starting with the Hille-Yosida theory, quite recent results are reached. The second half is more standard unitary theory with applications concerning the Galilean and Poincař groups. Appendices help readers with diverse backgrounds to find the precise descriptions of the concepts needed from earlier literature. Each chapter includes exercises Includes bibliographical references (p. 283-290) and indexes |
Beschreibung: | 1 Online-Ressource (vii, 301 p.) |
ISBN: | 9780444890726 0444890726 9780080872797 0080872794 1281754579 9781281754578 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317615 | ||
003 | DE-604 | ||
005 | 20210927 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1992 |||| o||u| ||||||eng d | ||
020 | |a 9780444890726 |9 978-0-444-89072-6 | ||
020 | |a 0444890726 |9 0-444-89072-6 | ||
020 | |a 9780080872797 |c electronic bk. |9 978-0-08-087279-7 | ||
020 | |a 0080872794 |c electronic bk. |9 0-08-087279-4 | ||
020 | |a 1281754579 |9 1-281-75457-9 | ||
020 | |a 9781281754578 |9 978-1-281-75457-8 | ||
035 | |a (ZDB-33-EBS)ocn316566727 | ||
035 | |a (OCoLC)316566727 | ||
035 | |a (DE-599)BVBBV042317615 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 512/.55 |2 22 | |
100 | 1 | |a Magyar, Zoltán |d 1959- |e Verfasser |0 (DE-588)1241979138 |4 aut | |
245 | 1 | 0 | |a Continuous linear representations |c Zoltán Magyar |
264 | 1 | |a Amsterdam |b North-Holland |c 1992 | |
300 | |a 1 Online-Ressource (vii, 301 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a North-Holland mathematics studies |v 168 | |
500 | |a This monograph gives access to the theory of continuous linear representations of general real Lie groups to readers who are already familiar with the rudiments of functional analysis and Lie groups. The first half of the book is centered around the relation between a continuous linear representation (of a Lie group over a Banach space or even a more general space) and its tangent; the latter is a Lie algebra representation in a sense. Starting with the Hille-Yosida theory, quite recent results are reached. The second half is more standard unitary theory with applications concerning the Galilean and Poincař groups. Appendices help readers with diverse backgrounds to find the precise descriptions of the concepts needed from earlier literature. Each chapter includes exercises | ||
500 | |a Includes bibliographical references (p. 283-290) and indexes | ||
650 | 4 | |a Lie, Groupes de | |
650 | 4 | |a Représentations de groupes | |
650 | 7 | |a Lie, groupes de |2 ram | |
650 | 7 | |a Représentations de groupes |2 ram | |
650 | 7 | |a Algèbre linéaire |2 ram | |
650 | 7 | |a Lie groups |2 fast | |
650 | 7 | |a Representations of groups |2 fast | |
650 | 7 | |a MATHEMATICS / Algebra / Linear |2 bisacsh | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Representations of groups | |
650 | 0 | 7 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stetige lineare Darstellung |0 (DE-588)4289273-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | 1 | |a Stetige lineare Darstellung |0 (DE-588)4289273-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |D s |
689 | 1 | 1 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444890726 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754606 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152914232475648 |
---|---|
any_adam_object | |
author | Magyar, Zoltán 1959- |
author_GND | (DE-588)1241979138 |
author_facet | Magyar, Zoltán 1959- |
author_role | aut |
author_sort | Magyar, Zoltán 1959- |
author_variant | z m zm |
building | Verbundindex |
bvnumber | BV042317615 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316566727 (OCoLC)316566727 (DE-599)BVBBV042317615 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03277nmm a2200673zcb4500</leader><controlfield tag="001">BV042317615</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210927 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444890726</subfield><subfield code="9">978-0-444-89072-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444890726</subfield><subfield code="9">0-444-89072-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080872797</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-087279-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080872794</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-087279-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281754579</subfield><subfield code="9">1-281-75457-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281754578</subfield><subfield code="9">978-1-281-75457-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316566727</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316566727</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317615</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Magyar, Zoltán</subfield><subfield code="d">1959-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1241979138</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continuous linear representations</subfield><subfield code="c">Zoltán Magyar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 301 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">North-Holland mathematics studies</subfield><subfield code="v">168</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph gives access to the theory of continuous linear representations of general real Lie groups to readers who are already familiar with the rudiments of functional analysis and Lie groups. The first half of the book is centered around the relation between a continuous linear representation (of a Lie group over a Banach space or even a more general space) and its tangent; the latter is a Lie algebra representation in a sense. Starting with the Hille-Yosida theory, quite recent results are reached. The second half is more standard unitary theory with applications concerning the Galilean and Poincař groups. Appendices help readers with diverse backgrounds to find the precise descriptions of the concepts needed from earlier literature. Each chapter includes exercises</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 283-290) and indexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Groupes de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Représentations de groupes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie, groupes de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Représentations de groupes</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algèbre linéaire</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Representations of groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Linear</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stetige lineare Darstellung</subfield><subfield code="0">(DE-588)4289273-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stetige lineare Darstellung</subfield><subfield code="0">(DE-588)4289273-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444890726</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754606</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317615 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:17Z |
institution | BVB |
isbn | 9780444890726 0444890726 9780080872797 0080872794 1281754579 9781281754578 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754606 |
oclc_num | 316566727 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (vii, 301 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | North-Holland |
record_format | marc |
series2 | North-Holland mathematics studies |
spelling | Magyar, Zoltán 1959- Verfasser (DE-588)1241979138 aut Continuous linear representations Zoltán Magyar Amsterdam North-Holland 1992 1 Online-Ressource (vii, 301 p.) txt rdacontent c rdamedia cr rdacarrier North-Holland mathematics studies 168 This monograph gives access to the theory of continuous linear representations of general real Lie groups to readers who are already familiar with the rudiments of functional analysis and Lie groups. The first half of the book is centered around the relation between a continuous linear representation (of a Lie group over a Banach space or even a more general space) and its tangent; the latter is a Lie algebra representation in a sense. Starting with the Hille-Yosida theory, quite recent results are reached. The second half is more standard unitary theory with applications concerning the Galilean and Poincař groups. Appendices help readers with diverse backgrounds to find the precise descriptions of the concepts needed from earlier literature. Each chapter includes exercises Includes bibliographical references (p. 283-290) and indexes Lie, Groupes de Représentations de groupes Lie, groupes de ram Représentations de groupes ram Algèbre linéaire ram Lie groups fast Representations of groups fast MATHEMATICS / Algebra / Linear bisacsh Lie groups Representations of groups Darstellung Mathematik (DE-588)4128289-9 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Stetige lineare Darstellung (DE-588)4289273-9 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 s Stetige lineare Darstellung (DE-588)4289273-9 s 1\p DE-604 Darstellung Mathematik (DE-588)4128289-9 s 2\p DE-604 http://www.sciencedirect.com/science/book/9780444890726 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Magyar, Zoltán 1959- Continuous linear representations Lie, Groupes de Représentations de groupes Lie, groupes de ram Représentations de groupes ram Algèbre linéaire ram Lie groups fast Representations of groups fast MATHEMATICS / Algebra / Linear bisacsh Lie groups Representations of groups Darstellung Mathematik (DE-588)4128289-9 gnd Lie-Gruppe (DE-588)4035695-4 gnd Stetige lineare Darstellung (DE-588)4289273-9 gnd |
subject_GND | (DE-588)4128289-9 (DE-588)4035695-4 (DE-588)4289273-9 |
title | Continuous linear representations |
title_auth | Continuous linear representations |
title_exact_search | Continuous linear representations |
title_full | Continuous linear representations Zoltán Magyar |
title_fullStr | Continuous linear representations Zoltán Magyar |
title_full_unstemmed | Continuous linear representations Zoltán Magyar |
title_short | Continuous linear representations |
title_sort | continuous linear representations |
topic | Lie, Groupes de Représentations de groupes Lie, groupes de ram Représentations de groupes ram Algèbre linéaire ram Lie groups fast Representations of groups fast MATHEMATICS / Algebra / Linear bisacsh Lie groups Representations of groups Darstellung Mathematik (DE-588)4128289-9 gnd Lie-Gruppe (DE-588)4035695-4 gnd Stetige lineare Darstellung (DE-588)4289273-9 gnd |
topic_facet | Lie, Groupes de Représentations de groupes Lie, groupes de Algèbre linéaire Lie groups Representations of groups MATHEMATICS / Algebra / Linear Darstellung Mathematik Lie-Gruppe Stetige lineare Darstellung |
url | http://www.sciencedirect.com/science/book/9780444890726 |
work_keys_str_mv | AT magyarzoltan continuouslinearrepresentations |