Projective differential geometry of submanifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
North-Holland
1993
|
Schriftenreihe: | North-Holland mathematical library
49 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In this book, the general theory of submanifolds in a multidimensional projective space is constructed. The topics dealt with include osculating spaces and fundamental forms of different orders, asymptotic and conjugate lines, submanifolds on the Grassmannians, different aspects of the normalization problems for submanifolds (with special emphasis given to a connection in the normal bundle) and the problem of algebraizability for different kinds of submanifolds, the geometry of hypersurfaces and hyperbands, etc. A series of special types of submanifolds with special projective structures are studied: submanifolds carrying a net of conjugate lines (in particular, conjugate systems), tangentially degenerate submanifolds, submanifolds with asymptotic and conjugate distributions etc. The method of moving frames and the apparatus of exterior differential forms are systematically used in the book and the results presented can be applied to the problems dealing with the linear subspaces or their generalizations. Graduate students majoring in differential geometry will find this monograph of great interest, as will researchers in differential and algebraic geometry, complex analysis and theory of several complex variables Includes bibliographical references (p. 297-331) and index |
Beschreibung: | 1 Online-Ressource (xi, 362 p.) |
ISBN: | 9780444897718 0444897712 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317581 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1993 |||| o||u| ||||||eng d | ||
020 | |a 9780444897718 |9 978-0-444-89771-8 | ||
020 | |a 0444897712 |9 0-444-89771-2 | ||
035 | |a (ZDB-33-EBS)ocn316566675 | ||
035 | |a (OCoLC)316566675 | ||
035 | |a (DE-599)BVBBV042317581 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 516.3/62 |2 22 | |
100 | 1 | |a Akivis, M. A., (Maks Aĭzikovich) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Projective differential geometry of submanifolds |c M.A. Akivis, V.V. Golʹdberg |
264 | 1 | |a Amsterdam |b North-Holland |c 1993 | |
300 | |a 1 Online-Ressource (xi, 362 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a North-Holland mathematical library |v 49 | |
500 | |a In this book, the general theory of submanifolds in a multidimensional projective space is constructed. The topics dealt with include osculating spaces and fundamental forms of different orders, asymptotic and conjugate lines, submanifolds on the Grassmannians, different aspects of the normalization problems for submanifolds (with special emphasis given to a connection in the normal bundle) and the problem of algebraizability for different kinds of submanifolds, the geometry of hypersurfaces and hyperbands, etc. A series of special types of submanifolds with special projective structures are studied: submanifolds carrying a net of conjugate lines (in particular, conjugate systems), tangentially degenerate submanifolds, submanifolds with asymptotic and conjugate distributions etc. The method of moving frames and the apparatus of exterior differential forms are systematically used in the book and the results presented can be applied to the problems dealing with the linear subspaces or their generalizations. Graduate students majoring in differential geometry will find this monograph of great interest, as will researchers in differential and algebraic geometry, complex analysis and theory of several complex variables | ||
500 | |a Includes bibliographical references (p. 297-331) and index | ||
650 | 7 | |a Geometria diferencial projetiva |2 larpcal | |
650 | 7 | |a Projective differential geometry |2 fast | |
650 | 7 | |a Submanifolds |2 fast | |
650 | 4 | |a Submanifolds | |
650 | 4 | |a Projective differential geometry | |
650 | 0 | 7 | |a Projektive Differentialgeometrie |0 (DE-588)4175883-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Untermannigfaltigkeit |0 (DE-588)4128503-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Projektive Differentialgeometrie |0 (DE-588)4175883-3 |D s |
689 | 0 | 1 | |a Untermannigfaltigkeit |0 (DE-588)4128503-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Golʹdberg, V. V. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444897718 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754572 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152914158026752 |
---|---|
any_adam_object | |
author | Akivis, M. A., (Maks Aĭzikovich) |
author_facet | Akivis, M. A., (Maks Aĭzikovich) |
author_role | aut |
author_sort | Akivis, M. A., (Maks Aĭzikovich) |
author_variant | m a m a a mama mamaa |
building | Verbundindex |
bvnumber | BV042317581 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316566675 (OCoLC)316566675 (DE-599)BVBBV042317581 |
dewey-full | 516.3/62 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/62 |
dewey-search | 516.3/62 |
dewey-sort | 3516.3 262 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03128nmm a2200517zcb4500</leader><controlfield tag="001">BV042317581</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444897718</subfield><subfield code="9">978-0-444-89771-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444897712</subfield><subfield code="9">0-444-89771-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316566675</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316566675</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317581</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/62</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Akivis, M. A., (Maks Aĭzikovich)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Projective differential geometry of submanifolds</subfield><subfield code="c">M.A. Akivis, V.V. Golʹdberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 362 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">North-Holland mathematical library</subfield><subfield code="v">49</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this book, the general theory of submanifolds in a multidimensional projective space is constructed. The topics dealt with include osculating spaces and fundamental forms of different orders, asymptotic and conjugate lines, submanifolds on the Grassmannians, different aspects of the normalization problems for submanifolds (with special emphasis given to a connection in the normal bundle) and the problem of algebraizability for different kinds of submanifolds, the geometry of hypersurfaces and hyperbands, etc. A series of special types of submanifolds with special projective structures are studied: submanifolds carrying a net of conjugate lines (in particular, conjugate systems), tangentially degenerate submanifolds, submanifolds with asymptotic and conjugate distributions etc. The method of moving frames and the apparatus of exterior differential forms are systematically used in the book and the results presented can be applied to the problems dealing with the linear subspaces or their generalizations. Graduate students majoring in differential geometry will find this monograph of great interest, as will researchers in differential and algebraic geometry, complex analysis and theory of several complex variables</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 297-331) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometria diferencial projetiva</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Projective differential geometry</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Submanifolds</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Submanifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Projective differential geometry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Projektive Differentialgeometrie</subfield><subfield code="0">(DE-588)4175883-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Untermannigfaltigkeit</subfield><subfield code="0">(DE-588)4128503-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Projektive Differentialgeometrie</subfield><subfield code="0">(DE-588)4175883-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Untermannigfaltigkeit</subfield><subfield code="0">(DE-588)4128503-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Golʹdberg, V. V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444897718</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754572</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317581 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:17Z |
institution | BVB |
isbn | 9780444897718 0444897712 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754572 |
oclc_num | 316566675 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xi, 362 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | North-Holland |
record_format | marc |
series2 | North-Holland mathematical library |
spelling | Akivis, M. A., (Maks Aĭzikovich) Verfasser aut Projective differential geometry of submanifolds M.A. Akivis, V.V. Golʹdberg Amsterdam North-Holland 1993 1 Online-Ressource (xi, 362 p.) txt rdacontent c rdamedia cr rdacarrier North-Holland mathematical library 49 In this book, the general theory of submanifolds in a multidimensional projective space is constructed. The topics dealt with include osculating spaces and fundamental forms of different orders, asymptotic and conjugate lines, submanifolds on the Grassmannians, different aspects of the normalization problems for submanifolds (with special emphasis given to a connection in the normal bundle) and the problem of algebraizability for different kinds of submanifolds, the geometry of hypersurfaces and hyperbands, etc. A series of special types of submanifolds with special projective structures are studied: submanifolds carrying a net of conjugate lines (in particular, conjugate systems), tangentially degenerate submanifolds, submanifolds with asymptotic and conjugate distributions etc. The method of moving frames and the apparatus of exterior differential forms are systematically used in the book and the results presented can be applied to the problems dealing with the linear subspaces or their generalizations. Graduate students majoring in differential geometry will find this monograph of great interest, as will researchers in differential and algebraic geometry, complex analysis and theory of several complex variables Includes bibliographical references (p. 297-331) and index Geometria diferencial projetiva larpcal Projective differential geometry fast Submanifolds fast Submanifolds Projective differential geometry Projektive Differentialgeometrie (DE-588)4175883-3 gnd rswk-swf Untermannigfaltigkeit (DE-588)4128503-7 gnd rswk-swf Projektive Differentialgeometrie (DE-588)4175883-3 s Untermannigfaltigkeit (DE-588)4128503-7 s 1\p DE-604 Golʹdberg, V. V. Sonstige oth http://www.sciencedirect.com/science/book/9780444897718 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Akivis, M. A., (Maks Aĭzikovich) Projective differential geometry of submanifolds Geometria diferencial projetiva larpcal Projective differential geometry fast Submanifolds fast Submanifolds Projective differential geometry Projektive Differentialgeometrie (DE-588)4175883-3 gnd Untermannigfaltigkeit (DE-588)4128503-7 gnd |
subject_GND | (DE-588)4175883-3 (DE-588)4128503-7 |
title | Projective differential geometry of submanifolds |
title_auth | Projective differential geometry of submanifolds |
title_exact_search | Projective differential geometry of submanifolds |
title_full | Projective differential geometry of submanifolds M.A. Akivis, V.V. Golʹdberg |
title_fullStr | Projective differential geometry of submanifolds M.A. Akivis, V.V. Golʹdberg |
title_full_unstemmed | Projective differential geometry of submanifolds M.A. Akivis, V.V. Golʹdberg |
title_short | Projective differential geometry of submanifolds |
title_sort | projective differential geometry of submanifolds |
topic | Geometria diferencial projetiva larpcal Projective differential geometry fast Submanifolds fast Submanifolds Projective differential geometry Projektive Differentialgeometrie (DE-588)4175883-3 gnd Untermannigfaltigkeit (DE-588)4128503-7 gnd |
topic_facet | Geometria diferencial projetiva Projective differential geometry Submanifolds Projektive Differentialgeometrie Untermannigfaltigkeit |
url | http://www.sciencedirect.com/science/book/9780444897718 |
work_keys_str_mv | AT akivismamaksaizikovich projectivedifferentialgeometryofsubmanifolds AT golʹdbergvv projectivedifferentialgeometryofsubmanifolds |