The Steiner tree problem:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
North-Holland
1992
|
Schriftenreihe: | Annals of discrete mathematics
53 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The Steiner problem asks for a shortest network which spans a given set of points. Minimum spanning networks have been well-studied when all connections are required to be between the given points. The novelty of the Steiner tree problem is that new auxiliary points can be introduced between the original points so that a spanning network of all the points will be shorter than otherwise possible. These new points are called Steiner points - locating them has proved problematic and research has diverged along many different avenues. This volume is devoted to the assimilation of the rich field of intriguing analyses and the consolidation of the fragments. A section has been given to each of the three major areas of interest which have emerged. The first concerns the Euclidean Steiner Problem, historically the original Steiner tree problem proposed by Jarník and Kössler in 1934. The second deals with the Steiner Problem in Networks, which was propounded independently by Hakimi and Levin and has enjoyed the most prolific research amongst the three areas. The Rectilinear Steiner Problem, introduced by Hanan in 1965, is discussed in the third part. Additionally, a forth section has been included, with chapters discussing areas where the body of results is still emerging. The collaboration of three authors with different styles and outlooks affords individual insights within a cohesive whole Includes bibliographical references and indexes |
Beschreibung: | 1 Online-Ressource (xi, 339 p.) |
ISBN: | 9780444890986 044489098X |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317554 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1992 |||| o||u| ||||||eng d | ||
020 | |a 9780444890986 |9 978-0-444-89098-6 | ||
020 | |a 044489098X |9 0-444-89098-X | ||
035 | |a (ZDB-33-EBS)ocn316565524 | ||
035 | |a (OCoLC)316565524 | ||
035 | |a (DE-599)BVBBV042317554 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 511/.5 |2 22 | |
100 | 1 | |a Hwang, Frank |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Steiner tree problem |c Frank K. Hwang, Dana S. Richards, Pawel Winter |
264 | 1 | |a Amsterdam |b North-Holland |c 1992 | |
300 | |a 1 Online-Ressource (xi, 339 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Annals of discrete mathematics |v 53 | |
500 | |a The Steiner problem asks for a shortest network which spans a given set of points. Minimum spanning networks have been well-studied when all connections are required to be between the given points. The novelty of the Steiner tree problem is that new auxiliary points can be introduced between the original points so that a spanning network of all the points will be shorter than otherwise possible. These new points are called Steiner points - locating them has proved problematic and research has diverged along many different avenues. This volume is devoted to the assimilation of the rich field of intriguing analyses and the consolidation of the fragments. A section has been given to each of the three major areas of interest which have emerged. The first concerns the Euclidean Steiner Problem, historically the original Steiner tree problem proposed by Jarník and Kössler in 1934. The second deals with the Steiner Problem in Networks, which was propounded independently by Hakimi and Levin and has enjoyed the most prolific research amongst the three areas. The Rectilinear Steiner Problem, introduced by Hanan in 1965, is discussed in the third part. Additionally, a forth section has been included, with chapters discussing areas where the body of results is still emerging. The collaboration of three authors with different styles and outlooks affords individual insights within a cohesive whole | ||
500 | |a Includes bibliographical references and indexes | ||
650 | 4 | |a Steiner, Systèmes de | |
650 | 7 | |a Handelsreizigersprobleem |2 gtt | |
650 | 7 | |a Netwerkanalyse |2 gtt | |
650 | 7 | |a Steiner, systèmes de |2 ram | |
650 | 7 | |a Steiner systems |2 fast | |
650 | 4 | |a Steiner systems | |
650 | 0 | 7 | |a Steiner-Tripelsystem |0 (DE-588)4183028-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Steiner-Baum |0 (DE-588)4228498-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Steiner-Baum |0 (DE-588)4228498-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Steiner-Tripelsystem |0 (DE-588)4183028-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Richards, Dana |e Sonstige |4 oth | |
700 | 1 | |a Winter, Pawel |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444890986 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754545 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152914103500800 |
---|---|
any_adam_object | |
author | Hwang, Frank |
author_facet | Hwang, Frank |
author_role | aut |
author_sort | Hwang, Frank |
author_variant | f h fh |
building | Verbundindex |
bvnumber | BV042317554 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316565524 (OCoLC)316565524 (DE-599)BVBBV042317554 |
dewey-full | 511/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.5 |
dewey-search | 511/.5 |
dewey-sort | 3511 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03385nmm a2200565zcb4500</leader><controlfield tag="001">BV042317554</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444890986</subfield><subfield code="9">978-0-444-89098-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">044489098X</subfield><subfield code="9">0-444-89098-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316565524</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316565524</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317554</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hwang, Frank</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Steiner tree problem</subfield><subfield code="c">Frank K. Hwang, Dana S. Richards, Pawel Winter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 339 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Annals of discrete mathematics</subfield><subfield code="v">53</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The Steiner problem asks for a shortest network which spans a given set of points. Minimum spanning networks have been well-studied when all connections are required to be between the given points. The novelty of the Steiner tree problem is that new auxiliary points can be introduced between the original points so that a spanning network of all the points will be shorter than otherwise possible. These new points are called Steiner points - locating them has proved problematic and research has diverged along many different avenues. This volume is devoted to the assimilation of the rich field of intriguing analyses and the consolidation of the fragments. A section has been given to each of the three major areas of interest which have emerged. The first concerns the Euclidean Steiner Problem, historically the original Steiner tree problem proposed by Jarník and Kössler in 1934. The second deals with the Steiner Problem in Networks, which was propounded independently by Hakimi and Levin and has enjoyed the most prolific research amongst the three areas. The Rectilinear Steiner Problem, introduced by Hanan in 1965, is discussed in the third part. Additionally, a forth section has been included, with chapters discussing areas where the body of results is still emerging. The collaboration of three authors with different styles and outlooks affords individual insights within a cohesive whole</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steiner, Systèmes de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Handelsreizigersprobleem</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Netwerkanalyse</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Steiner, systèmes de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Steiner systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steiner systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Steiner-Tripelsystem</subfield><subfield code="0">(DE-588)4183028-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Steiner-Baum</subfield><subfield code="0">(DE-588)4228498-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Steiner-Baum</subfield><subfield code="0">(DE-588)4228498-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Steiner-Tripelsystem</subfield><subfield code="0">(DE-588)4183028-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Richards, Dana</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Winter, Pawel</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444890986</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754545</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317554 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:17Z |
institution | BVB |
isbn | 9780444890986 044489098X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754545 |
oclc_num | 316565524 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xi, 339 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | North-Holland |
record_format | marc |
series2 | Annals of discrete mathematics |
spelling | Hwang, Frank Verfasser aut The Steiner tree problem Frank K. Hwang, Dana S. Richards, Pawel Winter Amsterdam North-Holland 1992 1 Online-Ressource (xi, 339 p.) txt rdacontent c rdamedia cr rdacarrier Annals of discrete mathematics 53 The Steiner problem asks for a shortest network which spans a given set of points. Minimum spanning networks have been well-studied when all connections are required to be between the given points. The novelty of the Steiner tree problem is that new auxiliary points can be introduced between the original points so that a spanning network of all the points will be shorter than otherwise possible. These new points are called Steiner points - locating them has proved problematic and research has diverged along many different avenues. This volume is devoted to the assimilation of the rich field of intriguing analyses and the consolidation of the fragments. A section has been given to each of the three major areas of interest which have emerged. The first concerns the Euclidean Steiner Problem, historically the original Steiner tree problem proposed by Jarník and Kössler in 1934. The second deals with the Steiner Problem in Networks, which was propounded independently by Hakimi and Levin and has enjoyed the most prolific research amongst the three areas. The Rectilinear Steiner Problem, introduced by Hanan in 1965, is discussed in the third part. Additionally, a forth section has been included, with chapters discussing areas where the body of results is still emerging. The collaboration of three authors with different styles and outlooks affords individual insights within a cohesive whole Includes bibliographical references and indexes Steiner, Systèmes de Handelsreizigersprobleem gtt Netwerkanalyse gtt Steiner, systèmes de ram Steiner systems fast Steiner systems Steiner-Tripelsystem (DE-588)4183028-3 gnd rswk-swf Steiner-Baum (DE-588)4228498-3 gnd rswk-swf Steiner-Baum (DE-588)4228498-3 s 1\p DE-604 Steiner-Tripelsystem (DE-588)4183028-3 s 2\p DE-604 Richards, Dana Sonstige oth Winter, Pawel Sonstige oth http://www.sciencedirect.com/science/book/9780444890986 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hwang, Frank The Steiner tree problem Steiner, Systèmes de Handelsreizigersprobleem gtt Netwerkanalyse gtt Steiner, systèmes de ram Steiner systems fast Steiner systems Steiner-Tripelsystem (DE-588)4183028-3 gnd Steiner-Baum (DE-588)4228498-3 gnd |
subject_GND | (DE-588)4183028-3 (DE-588)4228498-3 |
title | The Steiner tree problem |
title_auth | The Steiner tree problem |
title_exact_search | The Steiner tree problem |
title_full | The Steiner tree problem Frank K. Hwang, Dana S. Richards, Pawel Winter |
title_fullStr | The Steiner tree problem Frank K. Hwang, Dana S. Richards, Pawel Winter |
title_full_unstemmed | The Steiner tree problem Frank K. Hwang, Dana S. Richards, Pawel Winter |
title_short | The Steiner tree problem |
title_sort | the steiner tree problem |
topic | Steiner, Systèmes de Handelsreizigersprobleem gtt Netwerkanalyse gtt Steiner, systèmes de ram Steiner systems fast Steiner systems Steiner-Tripelsystem (DE-588)4183028-3 gnd Steiner-Baum (DE-588)4228498-3 gnd |
topic_facet | Steiner, Systèmes de Handelsreizigersprobleem Netwerkanalyse Steiner, systèmes de Steiner systems Steiner-Tripelsystem Steiner-Baum |
url | http://www.sciencedirect.com/science/book/9780444890986 |
work_keys_str_mv | AT hwangfrank thesteinertreeproblem AT richardsdana thesteinertreeproblem AT winterpawel thesteinertreeproblem |