Clifford theory for group representations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
North-Holland
c1989
|
Schriftenreihe: | North-Holland mathematics studies
156 Notas de matemática (Rio de Janeiro, Brazil) no. 125 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Let N be a normal subgroup of a finite group G and let F be a field. An important method for constructing irreducible FG-modules consists of the application (perhaps repeated) of three basic operations: (i) restriction to FN. (ii) extension from FN. (iii) induction from FN. This is the 'Clifford Theory' developed by Clifford in 1937. In the past twenty years, the theory has enjoyed a period of vigorous development. The foundations have been strengthened and reorganized from new points of view, especially from the viewpoint of graded rings and crossed products. The purpose of this monograph is to tie together various threads of the development in order to give a comprehensive picture of the current state of the subject. It is assumed that the reader has had the equivalent of a standard first-year graduate algebra course, i.e. familiarity with basic ring-theoretic, number-theoretic and group-theoretic concepts, and an understanding of elementary properties of modules, tensor products and fields Includes bibliographical references (p. [343]-354) and index |
Beschreibung: | 1 Online-Ressource (x, 364 p.) |
ISBN: | 9780444873774 0444873775 9780080872674 0080872670 1281790575 9781281790576 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317536 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1989 |||| o||u| ||||||eng d | ||
020 | |a 9780444873774 |9 978-0-444-87377-4 | ||
020 | |a 0444873775 |9 0-444-87377-5 | ||
020 | |a 9780080872674 |c electronic bk. |9 978-0-08-087267-4 | ||
020 | |a 0080872670 |c electronic bk. |9 0-08-087267-0 | ||
020 | |a 1281790575 |9 1-281-79057-5 | ||
020 | |a 9781281790576 |9 978-1-281-79057-6 | ||
035 | |a (ZDB-33-EBS)ocn316564629 | ||
035 | |a (OCoLC)316564629 | ||
035 | |a (DE-599)BVBBV042317536 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 510 |2 22 | |
082 | 0 | |a 512/.57 |2 22 | |
100 | 1 | |a Karpilovsky, Gregory |e Verfasser |4 aut | |
245 | 1 | 0 | |a Clifford theory for group representations |c Gregory Karpilovsky |
264 | 1 | |a Amsterdam |b North-Holland |c c1989 | |
300 | |a 1 Online-Ressource (x, 364 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a North-Holland mathematics studies |v 156 | |
490 | 0 | |a Notas de matemática (Rio de Janeiro, Brazil) |v no. 125 | |
500 | |a Let N be a normal subgroup of a finite group G and let F be a field. An important method for constructing irreducible FG-modules consists of the application (perhaps repeated) of three basic operations: (i) restriction to FN. (ii) extension from FN. (iii) induction from FN. This is the 'Clifford Theory' developed by Clifford in 1937. In the past twenty years, the theory has enjoyed a period of vigorous development. The foundations have been strengthened and reorganized from new points of view, especially from the viewpoint of graded rings and crossed products. The purpose of this monograph is to tie together various threads of the development in order to give a comprehensive picture of the current state of the subject. It is assumed that the reader has had the equivalent of a standard first-year graduate algebra course, i.e. familiarity with basic ring-theoretic, number-theoretic and group-theoretic concepts, and an understanding of elementary properties of modules, tensor products and fields | ||
500 | |a Includes bibliographical references (p. [343]-354) and index | ||
650 | 7 | |a Clifford, Algèbres de |2 ram | |
650 | 7 | |a Représentations de groupes |2 ram | |
650 | 7 | |a Clifford algebras |2 fast | |
650 | 7 | |a Representations of groups |2 fast | |
650 | 7 | |a MATHEMATICS / Algebra / Linear |2 bisacsh | |
650 | 4 | |a Algèbre Clifford | |
650 | 4 | |a Représentation groupe | |
650 | 4 | |a Algèbre groupe | |
650 | 4 | |a Produit croisé | |
650 | 4 | |a Extension groupe | |
650 | 7 | |a Clifford-Algebra |2 swd | |
650 | 7 | |a Darstellungstheorie |2 swd | |
650 | 4 | |a Clifford algebras | |
650 | 4 | |a Representations of groups | |
650 | 0 | 7 | |a Gruppe |g Mathematik |0 (DE-588)4022379-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Clifford-Algebra |0 (DE-588)4199958-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Clifford-Algebra |0 (DE-588)4199958-7 |D s |
689 | 0 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Gruppe |g Mathematik |0 (DE-588)4022379-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Darstellung |g Mathematik |0 (DE-588)4128289-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444873774 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754527 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152914068897792 |
---|---|
any_adam_object | |
author | Karpilovsky, Gregory |
author_facet | Karpilovsky, Gregory |
author_role | aut |
author_sort | Karpilovsky, Gregory |
author_variant | g k gk |
building | Verbundindex |
bvnumber | BV042317536 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316564629 (OCoLC)316564629 (DE-599)BVBBV042317536 |
dewey-full | 510 512/.57 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics 512 - Algebra |
dewey-raw | 510 512/.57 |
dewey-search | 510 512/.57 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03925nmm a2200781zcb4500</leader><controlfield tag="001">BV042317536</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1989 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444873774</subfield><subfield code="9">978-0-444-87377-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444873775</subfield><subfield code="9">0-444-87377-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080872674</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-087267-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080872670</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-087267-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281790575</subfield><subfield code="9">1-281-79057-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281790576</subfield><subfield code="9">978-1-281-79057-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316564629</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316564629</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317536</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.57</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Karpilovsky, Gregory</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Clifford theory for group representations</subfield><subfield code="c">Gregory Karpilovsky</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">c1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 364 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">North-Holland mathematics studies</subfield><subfield code="v">156</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Notas de matemática (Rio de Janeiro, Brazil)</subfield><subfield code="v">no. 125</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Let N be a normal subgroup of a finite group G and let F be a field. An important method for constructing irreducible FG-modules consists of the application (perhaps repeated) of three basic operations: (i) restriction to FN. (ii) extension from FN. (iii) induction from FN. This is the 'Clifford Theory' developed by Clifford in 1937. In the past twenty years, the theory has enjoyed a period of vigorous development. The foundations have been strengthened and reorganized from new points of view, especially from the viewpoint of graded rings and crossed products. The purpose of this monograph is to tie together various threads of the development in order to give a comprehensive picture of the current state of the subject. It is assumed that the reader has had the equivalent of a standard first-year graduate algebra course, i.e. familiarity with basic ring-theoretic, number-theoretic and group-theoretic concepts, and an understanding of elementary properties of modules, tensor products and fields</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [343]-354) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Clifford, Algèbres de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Représentations de groupes</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Clifford algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Representations of groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Linear</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbre Clifford</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Représentation groupe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbre groupe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Produit croisé</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extension groupe</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Clifford-Algebra</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clifford algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4022379-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gruppe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4022379-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Darstellung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128289-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444873774</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754527</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317536 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:16Z |
institution | BVB |
isbn | 9780444873774 0444873775 9780080872674 0080872670 1281790575 9781281790576 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754527 |
oclc_num | 316564629 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (x, 364 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | North-Holland |
record_format | marc |
series2 | North-Holland mathematics studies Notas de matemática (Rio de Janeiro, Brazil) |
spelling | Karpilovsky, Gregory Verfasser aut Clifford theory for group representations Gregory Karpilovsky Amsterdam North-Holland c1989 1 Online-Ressource (x, 364 p.) txt rdacontent c rdamedia cr rdacarrier North-Holland mathematics studies 156 Notas de matemática (Rio de Janeiro, Brazil) no. 125 Let N be a normal subgroup of a finite group G and let F be a field. An important method for constructing irreducible FG-modules consists of the application (perhaps repeated) of three basic operations: (i) restriction to FN. (ii) extension from FN. (iii) induction from FN. This is the 'Clifford Theory' developed by Clifford in 1937. In the past twenty years, the theory has enjoyed a period of vigorous development. The foundations have been strengthened and reorganized from new points of view, especially from the viewpoint of graded rings and crossed products. The purpose of this monograph is to tie together various threads of the development in order to give a comprehensive picture of the current state of the subject. It is assumed that the reader has had the equivalent of a standard first-year graduate algebra course, i.e. familiarity with basic ring-theoretic, number-theoretic and group-theoretic concepts, and an understanding of elementary properties of modules, tensor products and fields Includes bibliographical references (p. [343]-354) and index Clifford, Algèbres de ram Représentations de groupes ram Clifford algebras fast Representations of groups fast MATHEMATICS / Algebra / Linear bisacsh Algèbre Clifford Représentation groupe Algèbre groupe Produit croisé Extension groupe Clifford-Algebra swd Darstellungstheorie swd Clifford algebras Representations of groups Gruppe Mathematik (DE-588)4022379-6 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Darstellung Mathematik (DE-588)4128289-9 gnd rswk-swf Clifford-Algebra (DE-588)4199958-7 gnd rswk-swf Clifford-Algebra (DE-588)4199958-7 s Darstellungstheorie (DE-588)4148816-7 s 1\p DE-604 Gruppe Mathematik (DE-588)4022379-6 s 2\p DE-604 Darstellung Mathematik (DE-588)4128289-9 s 3\p DE-604 http://www.sciencedirect.com/science/book/9780444873774 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Karpilovsky, Gregory Clifford theory for group representations Clifford, Algèbres de ram Représentations de groupes ram Clifford algebras fast Representations of groups fast MATHEMATICS / Algebra / Linear bisacsh Algèbre Clifford Représentation groupe Algèbre groupe Produit croisé Extension groupe Clifford-Algebra swd Darstellungstheorie swd Clifford algebras Representations of groups Gruppe Mathematik (DE-588)4022379-6 gnd Darstellungstheorie (DE-588)4148816-7 gnd Darstellung Mathematik (DE-588)4128289-9 gnd Clifford-Algebra (DE-588)4199958-7 gnd |
subject_GND | (DE-588)4022379-6 (DE-588)4148816-7 (DE-588)4128289-9 (DE-588)4199958-7 |
title | Clifford theory for group representations |
title_auth | Clifford theory for group representations |
title_exact_search | Clifford theory for group representations |
title_full | Clifford theory for group representations Gregory Karpilovsky |
title_fullStr | Clifford theory for group representations Gregory Karpilovsky |
title_full_unstemmed | Clifford theory for group representations Gregory Karpilovsky |
title_short | Clifford theory for group representations |
title_sort | clifford theory for group representations |
topic | Clifford, Algèbres de ram Représentations de groupes ram Clifford algebras fast Representations of groups fast MATHEMATICS / Algebra / Linear bisacsh Algèbre Clifford Représentation groupe Algèbre groupe Produit croisé Extension groupe Clifford-Algebra swd Darstellungstheorie swd Clifford algebras Representations of groups Gruppe Mathematik (DE-588)4022379-6 gnd Darstellungstheorie (DE-588)4148816-7 gnd Darstellung Mathematik (DE-588)4128289-9 gnd Clifford-Algebra (DE-588)4199958-7 gnd |
topic_facet | Clifford, Algèbres de Représentations de groupes Clifford algebras Representations of groups MATHEMATICS / Algebra / Linear Algèbre Clifford Représentation groupe Algèbre groupe Produit croisé Extension groupe Clifford-Algebra Darstellungstheorie Gruppe Mathematik Darstellung Mathematik |
url | http://www.sciencedirect.com/science/book/9780444873774 |
work_keys_str_mv | AT karpilovskygregory cliffordtheoryforgrouprepresentations |