Scattering theory for hyperbolic operators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
North-Holland
1989
|
Schriftenreihe: | Studies in mathematics and its applications
v. 21 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Scattering Theory for dissipative and time-dependent systems has been intensively studied in the last fifteen years. The results in this field, based on various tools and techniques, may be found in many published papers. This monograph presents an approach which can be applied to spaces of both even and odd dimension. The ideas on which the approach is based are connected with the RAGE type theorem, with Enss' decomposition of the phase space and with a time-dependent proof of the existence of the operator W which exploits the decay of the local energy of the perturbed and free systems. Some inverse scattering problems for time-dependent potentials, and moving obstacles with an arbitrary geometry, are also treated in the book Includes bibliographical references (p. 355-370) |
Beschreibung: | 1 Online-Ressource (xiv, 373 p.) |
ISBN: | 9780444880567 0444880569 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317502 | ||
003 | DE-604 | ||
005 | 20160608 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1989 |||| o||u| ||||||eng d | ||
020 | |a 9780444880567 |9 978-0-444-88056-7 | ||
020 | |a 0444880569 |9 0-444-88056-9 | ||
035 | |a (ZDB-33-EBS)ocn316553034 | ||
035 | |a (OCoLC)316553034 | ||
035 | |a (DE-599)BVBBV042317502 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 515/.35 |2 22 | |
100 | 1 | |a Petkov, Vesselin |d 1942- |e Verfasser |0 (DE-588)1052731848 |4 aut | |
245 | 1 | 0 | |a Scattering theory for hyperbolic operators |c Vesselin Petkov |
264 | 1 | |a Amsterdam |b North-Holland |c 1989 | |
300 | |a 1 Online-Ressource (xiv, 373 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Studies in mathematics and its applications |v v. 21 | |
500 | |a Scattering Theory for dissipative and time-dependent systems has been intensively studied in the last fifteen years. The results in this field, based on various tools and techniques, may be found in many published papers. This monograph presents an approach which can be applied to spaces of both even and odd dimension. The ideas on which the approach is based are connected with the RAGE type theorem, with Enss' decomposition of the phase space and with a time-dependent proof of the existence of the operator W which exploits the decay of the local energy of the perturbed and free systems. Some inverse scattering problems for time-dependent potentials, and moving obstacles with an arbitrary geometry, are also treated in the book | ||
500 | |a Includes bibliographical references (p. 355-370) | ||
650 | 7 | |a Problèmes aux limites |2 ram | |
650 | 7 | |a Equation d'onde |2 ram | |
650 | 7 | |a Opérateurs de diffusion |2 ram | |
650 | 7 | |a Boundary value problems |2 fast | |
650 | 7 | |a Scattering operator |2 fast | |
650 | 7 | |a Wave equation |2 fast | |
650 | 4 | |a Boundary value problems | |
650 | 4 | |a Wave equation | |
650 | 4 | |a Scattering operator | |
650 | 0 | 7 | |a Streutheorie |0 (DE-588)4183697-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolischer Differentialoperator |0 (DE-588)4140064-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wellengleichung |0 (DE-588)4065315-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operator |0 (DE-588)4130529-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Randwertproblem |0 (DE-588)4048395-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Streutheorie |0 (DE-588)4183697-2 |D s |
689 | 0 | 1 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 0 | 2 | |a Wellengleichung |0 (DE-588)4065315-8 |D s |
689 | 0 | 3 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |D s |
689 | 0 | 4 | |a Operator |0 (DE-588)4130529-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Streutheorie |0 (DE-588)4183697-2 |D s |
689 | 1 | 1 | |a Hyperbolischer Differentialoperator |0 (DE-588)4140064-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444880567 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754493 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152913988157440 |
---|---|
any_adam_object | |
author | Petkov, Vesselin 1942- |
author_GND | (DE-588)1052731848 |
author_facet | Petkov, Vesselin 1942- |
author_role | aut |
author_sort | Petkov, Vesselin 1942- |
author_variant | v p vp |
building | Verbundindex |
bvnumber | BV042317502 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316553034 (OCoLC)316553034 (DE-599)BVBBV042317502 |
dewey-full | 515/.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.35 |
dewey-search | 515/.35 |
dewey-sort | 3515 235 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03366nmm a2200685zcb4500</leader><controlfield tag="001">BV042317502</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160608 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1989 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444880567</subfield><subfield code="9">978-0-444-88056-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444880569</subfield><subfield code="9">0-444-88056-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316553034</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316553034</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317502</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.35</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Petkov, Vesselin</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1052731848</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scattering theory for hyperbolic operators</subfield><subfield code="c">Vesselin Petkov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 373 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies in mathematics and its applications</subfield><subfield code="v">v. 21</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Scattering Theory for dissipative and time-dependent systems has been intensively studied in the last fifteen years. The results in this field, based on various tools and techniques, may be found in many published papers. This monograph presents an approach which can be applied to spaces of both even and odd dimension. The ideas on which the approach is based are connected with the RAGE type theorem, with Enss' decomposition of the phase space and with a time-dependent proof of the existence of the operator W which exploits the decay of the local energy of the perturbed and free systems. Some inverse scattering problems for time-dependent potentials, and moving obstacles with an arbitrary geometry, are also treated in the book</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 355-370)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Problèmes aux limites</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equation d'onde</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Opérateurs de diffusion</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Boundary value problems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Scattering operator</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wave equation</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scattering operator</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Streutheorie</subfield><subfield code="0">(DE-588)4183697-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolischer Differentialoperator</subfield><subfield code="0">(DE-588)4140064-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellengleichung</subfield><subfield code="0">(DE-588)4065315-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operator</subfield><subfield code="0">(DE-588)4130529-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Streutheorie</subfield><subfield code="0">(DE-588)4183697-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Wellengleichung</subfield><subfield code="0">(DE-588)4065315-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Operator</subfield><subfield code="0">(DE-588)4130529-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Streutheorie</subfield><subfield code="0">(DE-588)4183697-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Hyperbolischer Differentialoperator</subfield><subfield code="0">(DE-588)4140064-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444880567</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754493</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317502 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:16Z |
institution | BVB |
isbn | 9780444880567 0444880569 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754493 |
oclc_num | 316553034 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xiv, 373 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | North-Holland |
record_format | marc |
series2 | Studies in mathematics and its applications |
spelling | Petkov, Vesselin 1942- Verfasser (DE-588)1052731848 aut Scattering theory for hyperbolic operators Vesselin Petkov Amsterdam North-Holland 1989 1 Online-Ressource (xiv, 373 p.) txt rdacontent c rdamedia cr rdacarrier Studies in mathematics and its applications v. 21 Scattering Theory for dissipative and time-dependent systems has been intensively studied in the last fifteen years. The results in this field, based on various tools and techniques, may be found in many published papers. This monograph presents an approach which can be applied to spaces of both even and odd dimension. The ideas on which the approach is based are connected with the RAGE type theorem, with Enss' decomposition of the phase space and with a time-dependent proof of the existence of the operator W which exploits the decay of the local energy of the perturbed and free systems. Some inverse scattering problems for time-dependent potentials, and moving obstacles with an arbitrary geometry, are also treated in the book Includes bibliographical references (p. 355-370) Problèmes aux limites ram Equation d'onde ram Opérateurs de diffusion ram Boundary value problems fast Scattering operator fast Wave equation fast Boundary value problems Wave equation Scattering operator Streutheorie (DE-588)4183697-2 gnd rswk-swf Hyperbolischer Differentialoperator (DE-588)4140064-1 gnd rswk-swf Wellengleichung (DE-588)4065315-8 gnd rswk-swf Operator (DE-588)4130529-2 gnd rswk-swf Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd rswk-swf Randwertproblem (DE-588)4048395-2 gnd rswk-swf Streutheorie (DE-588)4183697-2 s Randwertproblem (DE-588)4048395-2 s Wellengleichung (DE-588)4065315-8 s Hyperbolische Differentialgleichung (DE-588)4131213-2 s Operator (DE-588)4130529-2 s 1\p DE-604 Hyperbolischer Differentialoperator (DE-588)4140064-1 s 2\p DE-604 http://www.sciencedirect.com/science/book/9780444880567 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Petkov, Vesselin 1942- Scattering theory for hyperbolic operators Problèmes aux limites ram Equation d'onde ram Opérateurs de diffusion ram Boundary value problems fast Scattering operator fast Wave equation fast Boundary value problems Wave equation Scattering operator Streutheorie (DE-588)4183697-2 gnd Hyperbolischer Differentialoperator (DE-588)4140064-1 gnd Wellengleichung (DE-588)4065315-8 gnd Operator (DE-588)4130529-2 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Randwertproblem (DE-588)4048395-2 gnd |
subject_GND | (DE-588)4183697-2 (DE-588)4140064-1 (DE-588)4065315-8 (DE-588)4130529-2 (DE-588)4131213-2 (DE-588)4048395-2 |
title | Scattering theory for hyperbolic operators |
title_auth | Scattering theory for hyperbolic operators |
title_exact_search | Scattering theory for hyperbolic operators |
title_full | Scattering theory for hyperbolic operators Vesselin Petkov |
title_fullStr | Scattering theory for hyperbolic operators Vesselin Petkov |
title_full_unstemmed | Scattering theory for hyperbolic operators Vesselin Petkov |
title_short | Scattering theory for hyperbolic operators |
title_sort | scattering theory for hyperbolic operators |
topic | Problèmes aux limites ram Equation d'onde ram Opérateurs de diffusion ram Boundary value problems fast Scattering operator fast Wave equation fast Boundary value problems Wave equation Scattering operator Streutheorie (DE-588)4183697-2 gnd Hyperbolischer Differentialoperator (DE-588)4140064-1 gnd Wellengleichung (DE-588)4065315-8 gnd Operator (DE-588)4130529-2 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Randwertproblem (DE-588)4048395-2 gnd |
topic_facet | Problèmes aux limites Equation d'onde Opérateurs de diffusion Boundary value problems Scattering operator Wave equation Streutheorie Hyperbolischer Differentialoperator Wellengleichung Operator Hyperbolische Differentialgleichung Randwertproblem |
url | http://www.sciencedirect.com/science/book/9780444880567 |
work_keys_str_mv | AT petkovvesselin scatteringtheoryforhyperbolicoperators |