Minimal surfaces of codimension one:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
North-Holland
1984
|
Schriftenreihe: | North-Holland mathematics studies
91 Notas de matemática (Rio de Janeiro, Brazil) no. 95 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book gives a unified presentation of different mathematical tools used to solve classical problems like Plateau's problem, Bernstein's problem, Dirichlet's problem for the Minimal Surface Equation and the Capillary problem. The fundamental idea is a quite elementary geometrical definition of codimension one surfaces. The isoperimetric property of the Euclidean balls, together with the modern theory of partial differential equations are used to solve the 19th Hilbert problem. Also included is a modern mathematical treatment of capillary problems Includes bibliographical references (p. [233]-240) and index |
Beschreibung: | 1 Online-Ressource (xi, 242 p.) |
ISBN: | 9780444868732 0444868739 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317475 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1984 |||| o||u| ||||||eng d | ||
020 | |a 9780444868732 |9 978-0-444-86873-2 | ||
020 | |a 0444868739 |9 0-444-86873-9 | ||
035 | |a (ZDB-33-EBS)ocn316552988 | ||
035 | |a (OCoLC)316552988 | ||
035 | |a (DE-599)BVBBV042317475 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 516.3/6 |2 22 | |
082 | 0 | |a 510 |2 22 | |
100 | 1 | |a Massari, Umberto |e Verfasser |4 aut | |
245 | 1 | 0 | |a Minimal surfaces of codimension one |c Umberto Massari and Mario Miranda |
264 | 1 | |a Amsterdam |b North-Holland |c 1984 | |
300 | |a 1 Online-Ressource (xi, 242 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a North-Holland mathematics studies |v 91 | |
490 | 0 | |a Notas de matemática (Rio de Janeiro, Brazil) |v no. 95 | |
500 | |a This book gives a unified presentation of different mathematical tools used to solve classical problems like Plateau's problem, Bernstein's problem, Dirichlet's problem for the Minimal Surface Equation and the Capillary problem. The fundamental idea is a quite elementary geometrical definition of codimension one surfaces. The isoperimetric property of the Euclidean balls, together with the modern theory of partial differential equations are used to solve the 19th Hilbert problem. Also included is a modern mathematical treatment of capillary problems | ||
500 | |a Includes bibliographical references (p. [233]-240) and index | ||
650 | 4 | |a Surfaces minimales | |
650 | 7 | |a Minimal surfaces |2 fast | |
650 | 4 | |a Minimal surfaces | |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Variationsrechnung |0 (DE-588)4062355-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Minimalfläche |0 (DE-588)4127814-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Minimalfläche |0 (DE-588)4127814-8 |D s |
689 | 0 | 1 | |a Variationsrechnung |0 (DE-588)4062355-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Miranda, Mario |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444868732 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754466 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152913949360128 |
---|---|
any_adam_object | |
author | Massari, Umberto |
author_facet | Massari, Umberto |
author_role | aut |
author_sort | Massari, Umberto |
author_variant | u m um |
building | Verbundindex |
bvnumber | BV042317475 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316552988 (OCoLC)316552988 (DE-599)BVBBV042317475 |
dewey-full | 516.3/6 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry 510 - Mathematics |
dewey-raw | 516.3/6 510 |
dewey-search | 516.3/6 510 |
dewey-sort | 3516.3 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02578nmm a2200565zcb4500</leader><controlfield tag="001">BV042317475</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1984 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444868732</subfield><subfield code="9">978-0-444-86873-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444868739</subfield><subfield code="9">0-444-86873-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316552988</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316552988</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317475</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/6</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Massari, Umberto</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimal surfaces of codimension one</subfield><subfield code="c">Umberto Massari and Mario Miranda</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 242 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">North-Holland mathematics studies</subfield><subfield code="v">91</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Notas de matemática (Rio de Janeiro, Brazil)</subfield><subfield code="v">no. 95</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book gives a unified presentation of different mathematical tools used to solve classical problems like Plateau's problem, Bernstein's problem, Dirichlet's problem for the Minimal Surface Equation and the Capillary problem. The fundamental idea is a quite elementary geometrical definition of codimension one surfaces. The isoperimetric property of the Euclidean balls, together with the modern theory of partial differential equations are used to solve the 19th Hilbert problem. Also included is a modern mathematical treatment of capillary problems</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [233]-240) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces minimales</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Minimal surfaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal surfaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Minimalfläche</subfield><subfield code="0">(DE-588)4127814-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Minimalfläche</subfield><subfield code="0">(DE-588)4127814-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miranda, Mario</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444868732</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754466</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317475 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:16Z |
institution | BVB |
isbn | 9780444868732 0444868739 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754466 |
oclc_num | 316552988 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xi, 242 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | North-Holland |
record_format | marc |
series2 | North-Holland mathematics studies Notas de matemática (Rio de Janeiro, Brazil) |
spelling | Massari, Umberto Verfasser aut Minimal surfaces of codimension one Umberto Massari and Mario Miranda Amsterdam North-Holland 1984 1 Online-Ressource (xi, 242 p.) txt rdacontent c rdamedia cr rdacarrier North-Holland mathematics studies 91 Notas de matemática (Rio de Janeiro, Brazil) no. 95 This book gives a unified presentation of different mathematical tools used to solve classical problems like Plateau's problem, Bernstein's problem, Dirichlet's problem for the Minimal Surface Equation and the Capillary problem. The fundamental idea is a quite elementary geometrical definition of codimension one surfaces. The isoperimetric property of the Euclidean balls, together with the modern theory of partial differential equations are used to solve the 19th Hilbert problem. Also included is a modern mathematical treatment of capillary problems Includes bibliographical references (p. [233]-240) and index Surfaces minimales Minimal surfaces fast Minimal surfaces Geometrie (DE-588)4020236-7 gnd rswk-swf Variationsrechnung (DE-588)4062355-5 gnd rswk-swf Minimalfläche (DE-588)4127814-8 gnd rswk-swf Minimalfläche (DE-588)4127814-8 s Variationsrechnung (DE-588)4062355-5 s 1\p DE-604 Geometrie (DE-588)4020236-7 s 2\p DE-604 Miranda, Mario Sonstige oth http://www.sciencedirect.com/science/book/9780444868732 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Massari, Umberto Minimal surfaces of codimension one Surfaces minimales Minimal surfaces fast Minimal surfaces Geometrie (DE-588)4020236-7 gnd Variationsrechnung (DE-588)4062355-5 gnd Minimalfläche (DE-588)4127814-8 gnd |
subject_GND | (DE-588)4020236-7 (DE-588)4062355-5 (DE-588)4127814-8 |
title | Minimal surfaces of codimension one |
title_auth | Minimal surfaces of codimension one |
title_exact_search | Minimal surfaces of codimension one |
title_full | Minimal surfaces of codimension one Umberto Massari and Mario Miranda |
title_fullStr | Minimal surfaces of codimension one Umberto Massari and Mario Miranda |
title_full_unstemmed | Minimal surfaces of codimension one Umberto Massari and Mario Miranda |
title_short | Minimal surfaces of codimension one |
title_sort | minimal surfaces of codimension one |
topic | Surfaces minimales Minimal surfaces fast Minimal surfaces Geometrie (DE-588)4020236-7 gnd Variationsrechnung (DE-588)4062355-5 gnd Minimalfläche (DE-588)4127814-8 gnd |
topic_facet | Surfaces minimales Minimal surfaces Geometrie Variationsrechnung Minimalfläche |
url | http://www.sciencedirect.com/science/book/9780444868732 |
work_keys_str_mv | AT massariumberto minimalsurfacesofcodimensionone AT mirandamario minimalsurfacesofcodimensionone |