Second order linear differential equations in Banach spaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
North-Holland
1985
|
Schriftenreihe: | North-Holland mathematics studies
108 Notas de matemática (Rio de Janeiro, Brazil) no. 99 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Second order linear differential equations in Banach spaces can be used for modelling such second order equations of mathematical physics as the wave equation, the Klein-Gordon equation, et al. In this way, a unified treatment can be given to subjects such as growth of solutions, singular perturbation of parabolic, hyperbolic and Schrödinger type initial value problems, and the like. The book covers in detail these subjects as well as the applications to each specific problem Includes bibliographical references (p. 303-314) |
Beschreibung: | 1 Online-Ressource (xiii, 314 p.) |
ISBN: | 9780444876980 0444876987 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317422 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1985 |||| o||u| ||||||eng d | ||
020 | |a 9780444876980 |9 978-0-444-87698-0 | ||
020 | |a 0444876987 |9 0-444-87698-7 | ||
035 | |a (ZDB-33-EBS)ocn316549596 | ||
035 | |a (OCoLC)316549596 | ||
035 | |a (DE-599)BVBBV042317422 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 515.3/54 |2 22 | |
082 | 0 | |a 510 |2 22 | |
100 | 1 | |a Fattorini, H. O., (Hector O.) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Second order linear differential equations in Banach spaces |c H.O. Fattorini |
264 | 1 | |a Amsterdam |b North-Holland |c 1985 | |
300 | |a 1 Online-Ressource (xiii, 314 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a North-Holland mathematics studies |v 108 | |
490 | 0 | |a Notas de matemática (Rio de Janeiro, Brazil) |v no. 99 | |
500 | |a Second order linear differential equations in Banach spaces can be used for modelling such second order equations of mathematical physics as the wave equation, the Klein-Gordon equation, et al. In this way, a unified treatment can be given to subjects such as growth of solutions, singular perturbation of parabolic, hyperbolic and Schrödinger type initial value problems, and the like. The book covers in detail these subjects as well as the applications to each specific problem | ||
500 | |a Includes bibliographical references (p. 303-314) | ||
650 | 4 | |a Équations aux dérivées partielles | |
650 | 4 | |a Équations différentielles linéaires | |
650 | 4 | |a Banach, Espaces de | |
650 | 7 | |a Banach spaces |2 fast | |
650 | 7 | |a Differential equations, Linear |2 fast | |
650 | 7 | |a Differential equations, Partial |2 fast | |
650 | 4 | |a Differential equations, Partial | |
650 | 4 | |a Differential equations, Linear | |
650 | 4 | |a Banach spaces | |
650 | 0 | 7 | |a Banach-Raum |0 (DE-588)4004402-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Differentialgleichung |0 (DE-588)4206889-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare Differentialgleichung |0 (DE-588)4206889-7 |D s |
689 | 0 | 1 | |a Banach-Raum |0 (DE-588)4004402-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 1 | 1 | |a Banach-Raum |0 (DE-588)4004402-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444876980 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754413 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152913822482432 |
---|---|
any_adam_object | |
author | Fattorini, H. O., (Hector O.) |
author_facet | Fattorini, H. O., (Hector O.) |
author_role | aut |
author_sort | Fattorini, H. O., (Hector O.) |
author_variant | h o h o f hoho hohof |
building | Verbundindex |
bvnumber | BV042317422 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316549596 (OCoLC)316549596 (DE-599)BVBBV042317422 |
dewey-full | 515.3/54 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis 510 - Mathematics |
dewey-raw | 515.3/54 510 |
dewey-search | 515.3/54 510 |
dewey-sort | 3515.3 254 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03128nmm a2200685zcb4500</leader><controlfield tag="001">BV042317422</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444876980</subfield><subfield code="9">978-0-444-87698-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444876987</subfield><subfield code="9">0-444-87698-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316549596</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316549596</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317422</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.3/54</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fattorini, H. O., (Hector O.)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Second order linear differential equations in Banach spaces</subfield><subfield code="c">H.O. Fattorini</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 314 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">North-Holland mathematics studies</subfield><subfield code="v">108</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Notas de matemática (Rio de Janeiro, Brazil)</subfield><subfield code="v">no. 99</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Second order linear differential equations in Banach spaces can be used for modelling such second order equations of mathematical physics as the wave equation, the Klein-Gordon equation, et al. In this way, a unified treatment can be given to subjects such as growth of solutions, singular perturbation of parabolic, hyperbolic and Schrödinger type initial value problems, and the like. The book covers in detail these subjects as well as the applications to each specific problem</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 303-314)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations aux dérivées partielles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles linéaires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach, Espaces de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Banach spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Linear</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Partial</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Linear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Differentialgleichung</subfield><subfield code="0">(DE-588)4206889-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Differentialgleichung</subfield><subfield code="0">(DE-588)4206889-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444876980</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754413</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317422 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:16Z |
institution | BVB |
isbn | 9780444876980 0444876987 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754413 |
oclc_num | 316549596 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xiii, 314 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | North-Holland |
record_format | marc |
series2 | North-Holland mathematics studies Notas de matemática (Rio de Janeiro, Brazil) |
spelling | Fattorini, H. O., (Hector O.) Verfasser aut Second order linear differential equations in Banach spaces H.O. Fattorini Amsterdam North-Holland 1985 1 Online-Ressource (xiii, 314 p.) txt rdacontent c rdamedia cr rdacarrier North-Holland mathematics studies 108 Notas de matemática (Rio de Janeiro, Brazil) no. 99 Second order linear differential equations in Banach spaces can be used for modelling such second order equations of mathematical physics as the wave equation, the Klein-Gordon equation, et al. In this way, a unified treatment can be given to subjects such as growth of solutions, singular perturbation of parabolic, hyperbolic and Schrödinger type initial value problems, and the like. The book covers in detail these subjects as well as the applications to each specific problem Includes bibliographical references (p. 303-314) Équations aux dérivées partielles Équations différentielles linéaires Banach, Espaces de Banach spaces fast Differential equations, Linear fast Differential equations, Partial fast Differential equations, Partial Differential equations, Linear Banach spaces Banach-Raum (DE-588)4004402-6 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Lineare Differentialgleichung (DE-588)4206889-7 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Lineare Differentialgleichung (DE-588)4206889-7 s Banach-Raum (DE-588)4004402-6 s 1\p DE-604 Partielle Differentialgleichung (DE-588)4044779-0 s 2\p DE-604 Differentialgleichung (DE-588)4012249-9 s 3\p DE-604 http://www.sciencedirect.com/science/book/9780444876980 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Fattorini, H. O., (Hector O.) Second order linear differential equations in Banach spaces Équations aux dérivées partielles Équations différentielles linéaires Banach, Espaces de Banach spaces fast Differential equations, Linear fast Differential equations, Partial fast Differential equations, Partial Differential equations, Linear Banach spaces Banach-Raum (DE-588)4004402-6 gnd Differentialgleichung (DE-588)4012249-9 gnd Lineare Differentialgleichung (DE-588)4206889-7 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4004402-6 (DE-588)4012249-9 (DE-588)4206889-7 (DE-588)4044779-0 |
title | Second order linear differential equations in Banach spaces |
title_auth | Second order linear differential equations in Banach spaces |
title_exact_search | Second order linear differential equations in Banach spaces |
title_full | Second order linear differential equations in Banach spaces H.O. Fattorini |
title_fullStr | Second order linear differential equations in Banach spaces H.O. Fattorini |
title_full_unstemmed | Second order linear differential equations in Banach spaces H.O. Fattorini |
title_short | Second order linear differential equations in Banach spaces |
title_sort | second order linear differential equations in banach spaces |
topic | Équations aux dérivées partielles Équations différentielles linéaires Banach, Espaces de Banach spaces fast Differential equations, Linear fast Differential equations, Partial fast Differential equations, Partial Differential equations, Linear Banach spaces Banach-Raum (DE-588)4004402-6 gnd Differentialgleichung (DE-588)4012249-9 gnd Lineare Differentialgleichung (DE-588)4206889-7 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Équations aux dérivées partielles Équations différentielles linéaires Banach, Espaces de Banach spaces Differential equations, Linear Differential equations, Partial Banach-Raum Differentialgleichung Lineare Differentialgleichung Partielle Differentialgleichung |
url | http://www.sciencedirect.com/science/book/9780444876980 |
work_keys_str_mv | AT fattorinihohectoro secondorderlineardifferentialequationsinbanachspaces |