The nature of mathematics and the mathematics of nature:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier
1998
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Chemistry, physics and biology are by their nature genuinely difficult. Mathematics, however, is man-made, and therefore not as complicated. Two ideas form the basis for this book: 1) to use ordinary mathematics to describe the simplicity in the structure of mathematics and 2) to develop new branches of mathematics to describe natural sciences. Mathematics can be described as the addition, subtraction or multiplication of planes. Using the exponential scale the authors show that the addition of planes gives the polyhedra, or any solid. The substraction of planes gives saddles. The multiplication of planes gives the general saddle equations and the multispirals. The equation of symmetry is derived, which contains the exponential scale with its functions for solids, the complex exponentials with the nodal surfaces, and the GD (Gauss Distribution) mathematics with finite periodicity. Piece by piece, the authors have found mathematical functions for the geometrical descriptions of chemical structures and the structure building operations. Using the mathematics for dilatation; twins, trillings, fourlings and sixlings are made, and using GD mathematics these are made periodic. This description of a structure is the nature of mathematics itself. Crystal structures and 3D mathematics are synonyms. Mathematics are used to describe rod packings, Olympic rings and defects in solids. Giant molecules such as cubosomes, the DNA double helix, and certain building blocks in protein structures are also described mathematically Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (vii, 345 p.) |
ISBN: | 9780444829948 0444829946 9780080537344 0080537340 1281120057 9781281120052 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042317361 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1998 |||| o||u| ||||||eng d | ||
020 | |a 9780444829948 |9 978-0-444-82994-8 | ||
020 | |a 0444829946 |9 0-444-82994-6 | ||
020 | |a 9780080537344 |c electronic bk. |9 978-0-08-053734-4 | ||
020 | |a 0080537340 |c electronic bk. |9 0-08-053734-0 | ||
020 | |a 1281120057 |9 1-281-12005-7 | ||
020 | |a 9781281120052 |9 978-1-281-12005-2 | ||
035 | |a (ZDB-33-EBS)ocn162589369 | ||
035 | |a (OCoLC)162589369 | ||
035 | |a (DE-599)BVBBV042317361 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 510 |2 22 | |
100 | 1 | |a Jacob, Michael |e Verfasser |4 aut | |
245 | 1 | 0 | |a The nature of mathematics and the mathematics of nature |c by Michael Jacob and Sten Andersson |
264 | 1 | |a Amsterdam |b Elsevier |c 1998 | |
300 | |a 1 Online-Ressource (vii, 345 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Chemistry, physics and biology are by their nature genuinely difficult. Mathematics, however, is man-made, and therefore not as complicated. Two ideas form the basis for this book: 1) to use ordinary mathematics to describe the simplicity in the structure of mathematics and 2) to develop new branches of mathematics to describe natural sciences. Mathematics can be described as the addition, subtraction or multiplication of planes. Using the exponential scale the authors show that the addition of planes gives the polyhedra, or any solid. The substraction of planes gives saddles. The multiplication of planes gives the general saddle equations and the multispirals. The equation of symmetry is derived, which contains the exponential scale with its functions for solids, the complex exponentials with the nodal surfaces, and the GD (Gauss Distribution) mathematics with finite periodicity. Piece by piece, the authors have found mathematical functions for the geometrical descriptions of chemical structures and the structure building operations. Using the mathematics for dilatation; twins, trillings, fourlings and sixlings are made, and using GD mathematics these are made periodic. This description of a structure is the nature of mathematics itself. Crystal structures and 3D mathematics are synonyms. Mathematics are used to describe rod packings, Olympic rings and defects in solids. Giant molecules such as cubosomes, the DNA double helix, and certain building blocks in protein structures are also described mathematically | ||
500 | |a Includes bibliographical references and index | ||
650 | 7 | |a MATHEMATICS / Essays |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Pre-Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Reference |2 bisacsh | |
650 | 7 | |a Mathematics |2 fast | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematics | |
650 | 0 | 7 | |a Modellierung |0 (DE-588)4170297-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Naturwissenschaften |0 (DE-588)4041421-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | 1 | |a Naturwissenschaften |0 (DE-588)4041421-8 |D s |
689 | 0 | 2 | |a Modellierung |0 (DE-588)4170297-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Andersson, Sten |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444829948 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754351 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152913693507584 |
---|---|
any_adam_object | |
author | Jacob, Michael |
author_facet | Jacob, Michael |
author_role | aut |
author_sort | Jacob, Michael |
author_variant | m j mj |
building | Verbundindex |
bvnumber | BV042317361 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn162589369 (OCoLC)162589369 (DE-599)BVBBV042317361 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03641nmm a2200589zc 4500</leader><controlfield tag="001">BV042317361</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444829948</subfield><subfield code="9">978-0-444-82994-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444829946</subfield><subfield code="9">0-444-82994-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080537344</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-053734-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080537340</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-053734-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281120057</subfield><subfield code="9">1-281-12005-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281120052</subfield><subfield code="9">978-1-281-12005-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn162589369</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162589369</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317361</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jacob, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The nature of mathematics and the mathematics of nature</subfield><subfield code="c">by Michael Jacob and Sten Andersson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 345 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chemistry, physics and biology are by their nature genuinely difficult. Mathematics, however, is man-made, and therefore not as complicated. Two ideas form the basis for this book: 1) to use ordinary mathematics to describe the simplicity in the structure of mathematics and 2) to develop new branches of mathematics to describe natural sciences. Mathematics can be described as the addition, subtraction or multiplication of planes. Using the exponential scale the authors show that the addition of planes gives the polyhedra, or any solid. The substraction of planes gives saddles. The multiplication of planes gives the general saddle equations and the multispirals. The equation of symmetry is derived, which contains the exponential scale with its functions for solids, the complex exponentials with the nodal surfaces, and the GD (Gauss Distribution) mathematics with finite periodicity. Piece by piece, the authors have found mathematical functions for the geometrical descriptions of chemical structures and the structure building operations. Using the mathematics for dilatation; twins, trillings, fourlings and sixlings are made, and using GD mathematics these are made periodic. This description of a structure is the nature of mathematics itself. Crystal structures and 3D mathematics are synonyms. Mathematics are used to describe rod packings, Olympic rings and defects in solids. Giant molecules such as cubosomes, the DNA double helix, and certain building blocks in protein structures are also described mathematically</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Essays</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Pre-Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Reference</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Naturwissenschaften</subfield><subfield code="0">(DE-588)4041421-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Naturwissenschaften</subfield><subfield code="0">(DE-588)4041421-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Andersson, Sten</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444829948</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754351</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317361 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:16Z |
institution | BVB |
isbn | 9780444829948 0444829946 9780080537344 0080537340 1281120057 9781281120052 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754351 |
oclc_num | 162589369 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (vii, 345 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Elsevier |
record_format | marc |
spelling | Jacob, Michael Verfasser aut The nature of mathematics and the mathematics of nature by Michael Jacob and Sten Andersson Amsterdam Elsevier 1998 1 Online-Ressource (vii, 345 p.) txt rdacontent c rdamedia cr rdacarrier Chemistry, physics and biology are by their nature genuinely difficult. Mathematics, however, is man-made, and therefore not as complicated. Two ideas form the basis for this book: 1) to use ordinary mathematics to describe the simplicity in the structure of mathematics and 2) to develop new branches of mathematics to describe natural sciences. Mathematics can be described as the addition, subtraction or multiplication of planes. Using the exponential scale the authors show that the addition of planes gives the polyhedra, or any solid. The substraction of planes gives saddles. The multiplication of planes gives the general saddle equations and the multispirals. The equation of symmetry is derived, which contains the exponential scale with its functions for solids, the complex exponentials with the nodal surfaces, and the GD (Gauss Distribution) mathematics with finite periodicity. Piece by piece, the authors have found mathematical functions for the geometrical descriptions of chemical structures and the structure building operations. Using the mathematics for dilatation; twins, trillings, fourlings and sixlings are made, and using GD mathematics these are made periodic. This description of a structure is the nature of mathematics itself. Crystal structures and 3D mathematics are synonyms. Mathematics are used to describe rod packings, Olympic rings and defects in solids. Giant molecules such as cubosomes, the DNA double helix, and certain building blocks in protein structures are also described mathematically Includes bibliographical references and index MATHEMATICS / Essays bisacsh MATHEMATICS / Pre-Calculus bisacsh MATHEMATICS / Reference bisacsh Mathematics fast Mathematik Mathematics Modellierung (DE-588)4170297-9 gnd rswk-swf Naturwissenschaften (DE-588)4041421-8 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Mathematik (DE-588)4037944-9 s Naturwissenschaften (DE-588)4041421-8 s Modellierung (DE-588)4170297-9 s 1\p DE-604 Andersson, Sten Sonstige oth http://www.sciencedirect.com/science/book/9780444829948 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Jacob, Michael The nature of mathematics and the mathematics of nature MATHEMATICS / Essays bisacsh MATHEMATICS / Pre-Calculus bisacsh MATHEMATICS / Reference bisacsh Mathematics fast Mathematik Mathematics Modellierung (DE-588)4170297-9 gnd Naturwissenschaften (DE-588)4041421-8 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4170297-9 (DE-588)4041421-8 (DE-588)4037944-9 |
title | The nature of mathematics and the mathematics of nature |
title_auth | The nature of mathematics and the mathematics of nature |
title_exact_search | The nature of mathematics and the mathematics of nature |
title_full | The nature of mathematics and the mathematics of nature by Michael Jacob and Sten Andersson |
title_fullStr | The nature of mathematics and the mathematics of nature by Michael Jacob and Sten Andersson |
title_full_unstemmed | The nature of mathematics and the mathematics of nature by Michael Jacob and Sten Andersson |
title_short | The nature of mathematics and the mathematics of nature |
title_sort | the nature of mathematics and the mathematics of nature |
topic | MATHEMATICS / Essays bisacsh MATHEMATICS / Pre-Calculus bisacsh MATHEMATICS / Reference bisacsh Mathematics fast Mathematik Mathematics Modellierung (DE-588)4170297-9 gnd Naturwissenschaften (DE-588)4041421-8 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | MATHEMATICS / Essays MATHEMATICS / Pre-Calculus MATHEMATICS / Reference Mathematics Mathematik Modellierung Naturwissenschaften |
url | http://www.sciencedirect.com/science/book/9780444829948 |
work_keys_str_mv | AT jacobmichael thenatureofmathematicsandthemathematicsofnature AT anderssonsten thenatureofmathematicsandthemathematicsofnature |