Lie algebras: finite and infinite dimensional Lie algebras and applications in physics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam, the Netherlands
North-Holland
©1990-©1997
|
Schriftenreihe: | Studies in mathematical physics
v. 1, 7 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Pt. 2 authors: E.A. de Kerf, G.G.A. Bäuerle, A.P.E. ten Kroode. - Pt. 2 lacks distributor statement This is the long awaited follow-up to Lie Algebras, Part I which covered a major part of the theory of Kac-Moody algebras, stressing primarily their mathematical structure. Part II deals mainly with the representations and applications of Lie Algebras and contains many cross references to Part I. The theoretical part largely deals with the representation theory of Lie algebras with a triangular decomposition, of which Kac-Moody algebras and the Virasoro algebra are prime examples. After setting up the general framework of highest weight representations, the book continues to treat topics as the Casimir operator and the Weyl-Kac character formula, which are specific for Kac-Moody algebras. The applications have a wide range. First, the book contains an exposition on the role of finite-dimensional semisimple Lie algebras and their representations in the standard and grand unified models of elementary particle physics. A second application is in the realm of soliton equations and their infinite-dimensional symmetry groups and algebras. The book concludes with a chapter on conformal field theory and the importance of the Virasoro and Kac-Moody algebras therein Includes bibliographical references and indexes |
Beschreibung: | 1 Online-Ressource (2 volumes) |
ISBN: | 9780444828361 0444828362 0080535461 9780080535463 0444887768 9780444887764 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317358 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1990 |||| o||u| ||||||eng d | ||
020 | |a 9780444828361 |9 978-0-444-82836-1 | ||
020 | |a 0444828362 |9 0-444-82836-2 | ||
020 | |a 0080535461 |c electronic bk. |9 0-08-053546-1 | ||
020 | |a 9780080535463 |c electronic bk. |9 978-0-08-053546-3 | ||
020 | |a 0444887768 |c pt. 1 |9 0-444-88776-8 | ||
020 | |a 9780444887764 |c pt. 1 |9 978-0-444-88776-4 | ||
035 | |a (ZDB-33-EBS)ocn162589312 | ||
035 | |a (OCoLC)162589312 | ||
035 | |a (DE-599)BVBBV042317358 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 512/.55 |2 22 | |
100 | 1 | |a Bäuerle, G. G. A., (Gerard G. A.) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lie algebras |b finite and infinite dimensional Lie algebras and applications in physics |c G.G.A. Bäuerle, E.A. de Kerf |
264 | 1 | |a Amsterdam, the Netherlands |b North-Holland |c ©1990-©1997 | |
300 | |a 1 Online-Ressource (2 volumes) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Studies in mathematical physics |v v. 1, 7 | |
500 | |a Pt. 2 authors: E.A. de Kerf, G.G.A. Bäuerle, A.P.E. ten Kroode. - Pt. 2 lacks distributor statement | ||
500 | |a This is the long awaited follow-up to Lie Algebras, Part I which covered a major part of the theory of Kac-Moody algebras, stressing primarily their mathematical structure. Part II deals mainly with the representations and applications of Lie Algebras and contains many cross references to Part I. The theoretical part largely deals with the representation theory of Lie algebras with a triangular decomposition, of which Kac-Moody algebras and the Virasoro algebra are prime examples. After setting up the general framework of highest weight representations, the book continues to treat topics as the Casimir operator and the Weyl-Kac character formula, which are specific for Kac-Moody algebras. The applications have a wide range. First, the book contains an exposition on the role of finite-dimensional semisimple Lie algebras and their representations in the standard and grand unified models of elementary particle physics. A second application is in the realm of soliton equations and their infinite-dimensional symmetry groups and algebras. The book concludes with a chapter on conformal field theory and the importance of the Virasoro and Kac-Moody algebras therein | ||
500 | |a Includes bibliographical references and indexes | ||
650 | 4 | |a Lie, Algèbres de | |
650 | 4 | |a Physique mathématique | |
650 | 7 | |a Lie algebras |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
650 | 7 | |a Lie-algebra's |2 gtt | |
650 | 7 | |a Physique mathématique |2 ram | |
650 | 7 | |a Lie, Algèbres de |2 ram | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Lie algebras | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Kerf, E. A. de |e Sonstige |4 oth | |
700 | 1 | |a Kroode, A. P. E. ten |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444828361 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754348 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152913711333376 |
---|---|
any_adam_object | |
author | Bäuerle, G. G. A., (Gerard G. A.) |
author_facet | Bäuerle, G. G. A., (Gerard G. A.) |
author_role | aut |
author_sort | Bäuerle, G. G. A., (Gerard G. A.) |
author_variant | g g a g g a b ggagga ggaggab |
building | Verbundindex |
bvnumber | BV042317358 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn162589312 (OCoLC)162589312 (DE-599)BVBBV042317358 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03491nmm a2200625zcb4500</leader><controlfield tag="001">BV042317358</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444828361</subfield><subfield code="9">978-0-444-82836-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444828362</subfield><subfield code="9">0-444-82836-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080535461</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-053546-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080535463</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-053546-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444887768</subfield><subfield code="c">pt. 1</subfield><subfield code="9">0-444-88776-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444887764</subfield><subfield code="c">pt. 1</subfield><subfield code="9">978-0-444-88776-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn162589312</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162589312</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317358</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bäuerle, G. G. A., (Gerard G. A.)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie algebras</subfield><subfield code="b">finite and infinite dimensional Lie algebras and applications in physics</subfield><subfield code="c">G.G.A. Bäuerle, E.A. de Kerf</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam, the Netherlands</subfield><subfield code="b">North-Holland</subfield><subfield code="c">©1990-©1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (2 volumes)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies in mathematical physics</subfield><subfield code="v">v. 1, 7</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Pt. 2 authors: E.A. de Kerf, G.G.A. Bäuerle, A.P.E. ten Kroode. - Pt. 2 lacks distributor statement</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is the long awaited follow-up to Lie Algebras, Part I which covered a major part of the theory of Kac-Moody algebras, stressing primarily their mathematical structure. Part II deals mainly with the representations and applications of Lie Algebras and contains many cross references to Part I. The theoretical part largely deals with the representation theory of Lie algebras with a triangular decomposition, of which Kac-Moody algebras and the Virasoro algebra are prime examples. After setting up the general framework of highest weight representations, the book continues to treat topics as the Casimir operator and the Weyl-Kac character formula, which are specific for Kac-Moody algebras. The applications have a wide range. First, the book contains an exposition on the role of finite-dimensional semisimple Lie algebras and their representations in the standard and grand unified models of elementary particle physics. A second application is in the realm of soliton equations and their infinite-dimensional symmetry groups and algebras. The book concludes with a chapter on conformal field theory and the importance of the Virasoro and Kac-Moody algebras therein</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Algèbres de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physique mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie-algebra's</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Physique mathématique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie, Algèbres de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kerf, E. A. de</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kroode, A. P. E. ten</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444828361</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754348</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317358 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:16Z |
institution | BVB |
isbn | 9780444828361 0444828362 0080535461 9780080535463 0444887768 9780444887764 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754348 |
oclc_num | 162589312 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (2 volumes) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | North-Holland |
record_format | marc |
series2 | Studies in mathematical physics |
spelling | Bäuerle, G. G. A., (Gerard G. A.) Verfasser aut Lie algebras finite and infinite dimensional Lie algebras and applications in physics G.G.A. Bäuerle, E.A. de Kerf Amsterdam, the Netherlands North-Holland ©1990-©1997 1 Online-Ressource (2 volumes) txt rdacontent c rdamedia cr rdacarrier Studies in mathematical physics v. 1, 7 Pt. 2 authors: E.A. de Kerf, G.G.A. Bäuerle, A.P.E. ten Kroode. - Pt. 2 lacks distributor statement This is the long awaited follow-up to Lie Algebras, Part I which covered a major part of the theory of Kac-Moody algebras, stressing primarily their mathematical structure. Part II deals mainly with the representations and applications of Lie Algebras and contains many cross references to Part I. The theoretical part largely deals with the representation theory of Lie algebras with a triangular decomposition, of which Kac-Moody algebras and the Virasoro algebra are prime examples. After setting up the general framework of highest weight representations, the book continues to treat topics as the Casimir operator and the Weyl-Kac character formula, which are specific for Kac-Moody algebras. The applications have a wide range. First, the book contains an exposition on the role of finite-dimensional semisimple Lie algebras and their representations in the standard and grand unified models of elementary particle physics. A second application is in the realm of soliton equations and their infinite-dimensional symmetry groups and algebras. The book concludes with a chapter on conformal field theory and the importance of the Virasoro and Kac-Moody algebras therein Includes bibliographical references and indexes Lie, Algèbres de Physique mathématique Lie algebras fast Mathematical physics fast Lie-algebra's gtt Physique mathématique ram Lie, Algèbres de ram Mathematische Physik Lie algebras Mathematical physics Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 s 1\p DE-604 Kerf, E. A. de Sonstige oth Kroode, A. P. E. ten Sonstige oth http://www.sciencedirect.com/science/book/9780444828361 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bäuerle, G. G. A., (Gerard G. A.) Lie algebras finite and infinite dimensional Lie algebras and applications in physics Lie, Algèbres de Physique mathématique Lie algebras fast Mathematical physics fast Lie-algebra's gtt Physique mathématique ram Lie, Algèbres de ram Mathematische Physik Lie algebras Mathematical physics Lie-Algebra (DE-588)4130355-6 gnd |
subject_GND | (DE-588)4130355-6 |
title | Lie algebras finite and infinite dimensional Lie algebras and applications in physics |
title_auth | Lie algebras finite and infinite dimensional Lie algebras and applications in physics |
title_exact_search | Lie algebras finite and infinite dimensional Lie algebras and applications in physics |
title_full | Lie algebras finite and infinite dimensional Lie algebras and applications in physics G.G.A. Bäuerle, E.A. de Kerf |
title_fullStr | Lie algebras finite and infinite dimensional Lie algebras and applications in physics G.G.A. Bäuerle, E.A. de Kerf |
title_full_unstemmed | Lie algebras finite and infinite dimensional Lie algebras and applications in physics G.G.A. Bäuerle, E.A. de Kerf |
title_short | Lie algebras |
title_sort | lie algebras finite and infinite dimensional lie algebras and applications in physics |
title_sub | finite and infinite dimensional Lie algebras and applications in physics |
topic | Lie, Algèbres de Physique mathématique Lie algebras fast Mathematical physics fast Lie-algebra's gtt Physique mathématique ram Lie, Algèbres de ram Mathematische Physik Lie algebras Mathematical physics Lie-Algebra (DE-588)4130355-6 gnd |
topic_facet | Lie, Algèbres de Physique mathématique Lie algebras Mathematical physics Lie-algebra's Mathematische Physik Lie-Algebra |
url | http://www.sciencedirect.com/science/book/9780444828361 |
work_keys_str_mv | AT bauerleggagerardga liealgebrasfiniteandinfinitedimensionalliealgebrasandapplicationsinphysics AT kerfeade liealgebrasfiniteandinfinitedimensionalliealgebrasandapplicationsinphysics AT kroodeapeten liealgebrasfiniteandinfinitedimensionalliealgebrasandapplicationsinphysics |