Elliptic boundary value problems of second order in piecewise smooth domains:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier
2006
|
Ausgabe: | 1st ed |
Schriftenreihe: | North-Holland mathematical library
v. 69 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The book contains a systematic treatment of the qualitative theory of elliptic boundary value problems for linear and quasilinear second order equations in non-smooth domains. The authors concentrate on the following fundamental results: sharp estimates for strong and weak solutions, solvability of the boundary value problems, regularity assertions for solutions near singular points. Key features: * New the Hardy Friedrichs Wirtinger type inequalities as well as new integral inequalities related to the Cauchy problem for a differential equation. * Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this. * The question about the influence of the coefficients smoothness on the regularity of solutions. * New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points. * The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems. * The behaviour of weak solutions near conical point for the Dirichlet problem for m Laplacian. * The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration. * Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this. * The question about the influence of the coefficients smoothness on the regularity of solutions. * New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points. * The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems. * The behaviour of weak solutions near conical point for the Dirichlet problem for m - Laplacian. * The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration Includes bibliographical references (p. 497-525) and indexes |
Beschreibung: | 1 Online-Ressource (v, 531 p.) |
ISBN: | 9780444521095 0444521097 0080461735 9780080461731 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317350 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s2006 |||| o||u| ||||||eng d | ||
020 | |a 9780444521095 |9 978-0-444-52109-5 | ||
020 | |a 0444521097 |9 0-444-52109-7 | ||
020 | |a 0080461735 |c electronic bk. |9 0-08-046173-5 | ||
020 | |a 9780080461731 |c electronic bk. |9 978-0-08-046173-1 | ||
035 | |a (ZDB-33-EBS)ocn162587091 | ||
035 | |a (OCoLC)162587091 | ||
035 | |a (DE-599)BVBBV042317350 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 515/.3533 |2 22 | |
100 | 1 | |a Borsuk, Mikhail |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elliptic boundary value problems of second order in piecewise smooth domains |c Mikhail Borsuk, Vladimir Kondratiev |
250 | |a 1st ed | ||
264 | 1 | |a Amsterdam |b Elsevier |c 2006 | |
300 | |a 1 Online-Ressource (v, 531 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a North-Holland mathematical library |v v. 69 | |
500 | |a The book contains a systematic treatment of the qualitative theory of elliptic boundary value problems for linear and quasilinear second order equations in non-smooth domains. The authors concentrate on the following fundamental results: sharp estimates for strong and weak solutions, solvability of the boundary value problems, regularity assertions for solutions near singular points. Key features: * New the Hardy Friedrichs Wirtinger type inequalities as well as new integral inequalities related to the Cauchy problem for a differential equation. * Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this. * The question about the influence of the coefficients smoothness on the regularity of solutions. * New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points. * The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems. * The behaviour of weak solutions near conical point for the Dirichlet problem for m Laplacian. * The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration. * Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this. * The question about the influence of the coefficients smoothness on the regularity of solutions. * New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points. * The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems. * The behaviour of weak solutions near conical point for the Dirichlet problem for m - Laplacian. * The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration | ||
500 | |a Includes bibliographical references (p. 497-525) and indexes | ||
650 | 7 | |a MATHEMATICS / Differential Equations / Partial |2 bisacsh | |
650 | 7 | |a Boundary value problems |2 local | |
650 | 7 | |a Differential equations, Elliptic |2 local | |
650 | 7 | |a Boundary value problems |2 fast | |
650 | 7 | |a Differential equations, Elliptic |2 fast | |
650 | 4 | |a Boundary value problems | |
650 | 4 | |a Differential equations, Elliptic | |
650 | 0 | 7 | |a Elliptisches Randwertproblem |0 (DE-588)4193399-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elliptisches Randwertproblem |0 (DE-588)4193399-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Kondratʹev, V. P. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444521095 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754340 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152913683021824 |
---|---|
any_adam_object | |
author | Borsuk, Mikhail |
author_facet | Borsuk, Mikhail |
author_role | aut |
author_sort | Borsuk, Mikhail |
author_variant | m b mb |
building | Verbundindex |
bvnumber | BV042317350 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn162587091 (OCoLC)162587091 (DE-599)BVBBV042317350 |
dewey-full | 515/.3533 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.3533 |
dewey-search | 515/.3533 |
dewey-sort | 3515 43533 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04047nmm a2200553zcb4500</leader><controlfield tag="001">BV042317350</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444521095</subfield><subfield code="9">978-0-444-52109-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444521097</subfield><subfield code="9">0-444-52109-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080461735</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-046173-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080461731</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-046173-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn162587091</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162587091</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317350</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.3533</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borsuk, Mikhail</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elliptic boundary value problems of second order in piecewise smooth domains</subfield><subfield code="c">Mikhail Borsuk, Vladimir Kondratiev</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (v, 531 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">North-Holland mathematical library</subfield><subfield code="v">v. 69</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The book contains a systematic treatment of the qualitative theory of elliptic boundary value problems for linear and quasilinear second order equations in non-smooth domains. The authors concentrate on the following fundamental results: sharp estimates for strong and weak solutions, solvability of the boundary value problems, regularity assertions for solutions near singular points. Key features: * New the Hardy Friedrichs Wirtinger type inequalities as well as new integral inequalities related to the Cauchy problem for a differential equation. * Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this. * The question about the influence of the coefficients smoothness on the regularity of solutions. * New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points. * The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems. * The behaviour of weak solutions near conical point for the Dirichlet problem for m Laplacian. * The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration. * Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this. * The question about the influence of the coefficients smoothness on the regularity of solutions. * New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points. * The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems. * The behaviour of weak solutions near conical point for the Dirichlet problem for m - Laplacian. * The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 497-525) and indexes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Differential Equations / Partial</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Boundary value problems</subfield><subfield code="2">local</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Elliptic</subfield><subfield code="2">local</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Boundary value problems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Elliptic</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Elliptic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptisches Randwertproblem</subfield><subfield code="0">(DE-588)4193399-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elliptisches Randwertproblem</subfield><subfield code="0">(DE-588)4193399-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kondratʹev, V. P.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444521095</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754340</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317350 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:16Z |
institution | BVB |
isbn | 9780444521095 0444521097 0080461735 9780080461731 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754340 |
oclc_num | 162587091 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (v, 531 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Elsevier |
record_format | marc |
series2 | North-Holland mathematical library |
spelling | Borsuk, Mikhail Verfasser aut Elliptic boundary value problems of second order in piecewise smooth domains Mikhail Borsuk, Vladimir Kondratiev 1st ed Amsterdam Elsevier 2006 1 Online-Ressource (v, 531 p.) txt rdacontent c rdamedia cr rdacarrier North-Holland mathematical library v. 69 The book contains a systematic treatment of the qualitative theory of elliptic boundary value problems for linear and quasilinear second order equations in non-smooth domains. The authors concentrate on the following fundamental results: sharp estimates for strong and weak solutions, solvability of the boundary value problems, regularity assertions for solutions near singular points. Key features: * New the Hardy Friedrichs Wirtinger type inequalities as well as new integral inequalities related to the Cauchy problem for a differential equation. * Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this. * The question about the influence of the coefficients smoothness on the regularity of solutions. * New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points. * The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems. * The behaviour of weak solutions near conical point for the Dirichlet problem for m Laplacian. * The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration. * Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this. * The question about the influence of the coefficients smoothness on the regularity of solutions. * New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points. * The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems. * The behaviour of weak solutions near conical point for the Dirichlet problem for m - Laplacian. * The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration Includes bibliographical references (p. 497-525) and indexes MATHEMATICS / Differential Equations / Partial bisacsh Boundary value problems local Differential equations, Elliptic local Boundary value problems fast Differential equations, Elliptic fast Boundary value problems Differential equations, Elliptic Elliptisches Randwertproblem (DE-588)4193399-0 gnd rswk-swf Elliptisches Randwertproblem (DE-588)4193399-0 s 1\p DE-604 Kondratʹev, V. P. Sonstige oth http://www.sciencedirect.com/science/book/9780444521095 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Borsuk, Mikhail Elliptic boundary value problems of second order in piecewise smooth domains MATHEMATICS / Differential Equations / Partial bisacsh Boundary value problems local Differential equations, Elliptic local Boundary value problems fast Differential equations, Elliptic fast Boundary value problems Differential equations, Elliptic Elliptisches Randwertproblem (DE-588)4193399-0 gnd |
subject_GND | (DE-588)4193399-0 |
title | Elliptic boundary value problems of second order in piecewise smooth domains |
title_auth | Elliptic boundary value problems of second order in piecewise smooth domains |
title_exact_search | Elliptic boundary value problems of second order in piecewise smooth domains |
title_full | Elliptic boundary value problems of second order in piecewise smooth domains Mikhail Borsuk, Vladimir Kondratiev |
title_fullStr | Elliptic boundary value problems of second order in piecewise smooth domains Mikhail Borsuk, Vladimir Kondratiev |
title_full_unstemmed | Elliptic boundary value problems of second order in piecewise smooth domains Mikhail Borsuk, Vladimir Kondratiev |
title_short | Elliptic boundary value problems of second order in piecewise smooth domains |
title_sort | elliptic boundary value problems of second order in piecewise smooth domains |
topic | MATHEMATICS / Differential Equations / Partial bisacsh Boundary value problems local Differential equations, Elliptic local Boundary value problems fast Differential equations, Elliptic fast Boundary value problems Differential equations, Elliptic Elliptisches Randwertproblem (DE-588)4193399-0 gnd |
topic_facet | MATHEMATICS / Differential Equations / Partial Boundary value problems Differential equations, Elliptic Elliptisches Randwertproblem |
url | http://www.sciencedirect.com/science/book/9780444521095 |
work_keys_str_mv | AT borsukmikhail ellipticboundaryvalueproblemsofsecondorderinpiecewisesmoothdomains AT kondratʹevvp ellipticboundaryvalueproblemsofsecondorderinpiecewisesmoothdomains |