Lectures on the Curry-Howard isomorphism:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier
2006
|
Ausgabe: | 1st ed |
Schriftenreihe: | Studies in logic and the foundations of mathematics
v. 149 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance, minimal propositional logic corresponds to simply typed lambda-calculus, first-order logic corresponds to dependent types, second-order logic corresponds to polymorphic types, sequent calculus is related to explicit substitution, etc. The isomorphism has many aspects, even at the syntactic level: formulas correspond to types, proofs correspond to terms, provability corresponds to inhabitation, proof normalization corresponds to term reduction, etc. But there is more to the isomorphism than this. For instance, it is an old idea---due to Brouwer, Kolmogorov, and Heyting---that a constructive proof of an implication is a procedure that transforms proofs of the antecedent into proofs of the succedent; the Curry-Howard isomorphism gives syntactic representations of such procedures. The Curry-Howard isomorphism also provides theoretical foundations for many modern proof-assistant systems (e.g. Coq). This book give an introduction to parts of proof theory and related aspects of type theory relevant for the Curry-Howard isomorphism. It can serve as an introduction to any or both of typed lambda-calculus and intuitionistic logic. Key features - The Curry-Howard Isomorphism treated as common theme - Reader-friendly introduction to two complementary subjects: Lambda-calculus and constructive logics - Thorough study of the connection between calculi and logics - Elaborate study of classical logics and control operators - Account of dialogue games for classical and intuitionistic logic - Theoretical foundations of computer-assisted reasoning The Curry-Howard Isomorphism treated as the common theme. Reader-friendly introduction to two complementary subjects: lambda-calculus and constructive logics Thorough study of the connection between calculi and logics. Elaborate study of classical logics and control operators. Account of dialogue games for classical and intuitionistic logic. Theoretical foundations of computer-assisted reasoning Includes bibliographical references (p. 403-430) and index |
Beschreibung: | 1 Online-Ressource (xiv, 442 p.) |
ISBN: | 9780444520777 0444520775 9780080478920 0080478921 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317348 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s2006 |||| o||u| ||||||eng d | ||
020 | |a 9780444520777 |9 978-0-444-52077-7 | ||
020 | |a 0444520775 |9 0-444-52077-5 | ||
020 | |a 9780080478920 |c electronic bk. |9 978-0-08-047892-0 | ||
020 | |a 0080478921 |c electronic bk. |9 0-08-047892-1 | ||
035 | |a (ZDB-33-EBS)ocn162586983 | ||
035 | |a (OCoLC)162586983 | ||
035 | |a (DE-599)BVBBV042317348 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 511.3/26 |2 22 | |
100 | 1 | |a Sørensen, Morten Heine |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lectures on the Curry-Howard isomorphism |c Morten Heine Sørensen, Paweł Urzyczyn |
250 | |a 1st ed | ||
264 | 1 | |a Amsterdam |b Elsevier |c 2006 | |
300 | |a 1 Online-Ressource (xiv, 442 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Studies in logic and the foundations of mathematics |v v. 149 | |
500 | |a The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance, minimal propositional logic corresponds to simply typed lambda-calculus, first-order logic corresponds to dependent types, second-order logic corresponds to polymorphic types, sequent calculus is related to explicit substitution, etc. The isomorphism has many aspects, even at the syntactic level: formulas correspond to types, proofs correspond to terms, provability corresponds to inhabitation, proof normalization corresponds to term reduction, etc. But there is more to the isomorphism than this. For instance, it is an old idea---due to Brouwer, Kolmogorov, and Heyting---that a constructive proof of an implication is a procedure that transforms proofs of the antecedent into proofs of the succedent; the Curry-Howard isomorphism gives syntactic representations of such procedures. | ||
500 | |a The Curry-Howard isomorphism also provides theoretical foundations for many modern proof-assistant systems (e.g. Coq). This book give an introduction to parts of proof theory and related aspects of type theory relevant for the Curry-Howard isomorphism. It can serve as an introduction to any or both of typed lambda-calculus and intuitionistic logic. Key features - The Curry-Howard Isomorphism treated as common theme - Reader-friendly introduction to two complementary subjects: Lambda-calculus and constructive logics - Thorough study of the connection between calculi and logics - Elaborate study of classical logics and control operators - Account of dialogue games for classical and intuitionistic logic - Theoretical foundations of computer-assisted reasoning The Curry-Howard Isomorphism treated as the common theme. Reader-friendly introduction to two complementary subjects: lambda-calculus and constructive logics Thorough study of the connection between calculi and logics. | ||
500 | |a Elaborate study of classical logics and control operators. Account of dialogue games for classical and intuitionistic logic. Theoretical foundations of computer-assisted reasoning | ||
500 | |a Includes bibliographical references (p. 403-430) and index | ||
650 | 7 | |a Lambda-calculus |2 gtt | |
650 | 7 | |a Programmeren (computers) |2 gtt | |
650 | 7 | |a MATHEMATICS / Transformations |2 bisacsh | |
650 | 7 | |a Curry-Howard isomorphism |2 fast | |
650 | 7 | |a Lambda calculus |2 fast | |
650 | 7 | |a Proof theory |2 fast | |
650 | 4 | |a Curry-Howard isomorphism | |
650 | 4 | |a Lambda calculus | |
650 | 4 | |a Proof theory | |
650 | 0 | 7 | |a Prädikatenlogik |0 (DE-588)4046974-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Programmierung |0 (DE-588)4076370-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beweis |0 (DE-588)4132532-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kombinatorische Logik |0 (DE-588)4164750-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analogie |0 (DE-588)4197814-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Typisierter Lambda-Kalkül |0 (DE-588)4270792-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beweissystem |0 (DE-588)4711800-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beweistheorie |0 (DE-588)4145177-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Peano-Arithmetik |0 (DE-588)4290970-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Berechnung |0 (DE-588)4120997-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lambda-Kalkül |0 (DE-588)4166495-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Intuitionistische Logik |0 (DE-588)4162199-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | 1 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 0 | 2 | |a Berechnung |0 (DE-588)4120997-7 |D s |
689 | 0 | 3 | |a Beweis |0 (DE-588)4132532-1 |D s |
689 | 0 | 4 | |a Analogie |0 (DE-588)4197814-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Programmierung |0 (DE-588)4076370-5 |D s |
689 | 1 | 1 | |a Analogie |0 (DE-588)4197814-6 |D s |
689 | 1 | 2 | |a Peano-Arithmetik |0 (DE-588)4290970-3 |D s |
689 | 1 | 3 | |a Beweissystem |0 (DE-588)4711800-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Prädikatenlogik |0 (DE-588)4046974-8 |D s |
689 | 2 | 1 | |a Programmierung |0 (DE-588)4076370-5 |D s |
689 | 2 | 2 | |a Analogie |0 (DE-588)4197814-6 |D s |
689 | 2 | 3 | |a Beweissystem |0 (DE-588)4711800-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Intuitionistische Logik |0 (DE-588)4162199-2 |D s |
689 | 3 | 1 | |a Analogie |0 (DE-588)4197814-6 |D s |
689 | 3 | 2 | |a Typisierter Lambda-Kalkül |0 (DE-588)4270792-4 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Kombinatorische Logik |0 (DE-588)4164750-6 |D s |
689 | 4 | 1 | |a Analogie |0 (DE-588)4197814-6 |D s |
689 | 4 | 2 | |a Beweissystem |0 (DE-588)4711800-3 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
689 | 5 | 0 | |a Kombinatorische Logik |0 (DE-588)4164750-6 |D s |
689 | 5 | 1 | |a Lambda-Kalkül |0 (DE-588)4166495-4 |D s |
689 | 5 | 2 | |a Beweistheorie |0 (DE-588)4145177-6 |D s |
689 | 5 | |8 6\p |5 DE-604 | |
700 | 1 | |a Urzyczyn, Paweł |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444520777 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754338 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152913684070400 |
---|---|
any_adam_object | |
author | Sørensen, Morten Heine |
author_facet | Sørensen, Morten Heine |
author_role | aut |
author_sort | Sørensen, Morten Heine |
author_variant | m h s mh mhs |
building | Verbundindex |
bvnumber | BV042317348 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn162586983 (OCoLC)162586983 (DE-599)BVBBV042317348 |
dewey-full | 511.3/26 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/26 |
dewey-search | 511.3/26 |
dewey-sort | 3511.3 226 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06725nmm a2201129zcb4500</leader><controlfield tag="001">BV042317348</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444520777</subfield><subfield code="9">978-0-444-52077-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444520775</subfield><subfield code="9">0-444-52077-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080478920</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-047892-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080478921</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-047892-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn162586983</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162586983</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317348</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/26</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sørensen, Morten Heine</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on the Curry-Howard isomorphism</subfield><subfield code="c">Morten Heine Sørensen, Paweł Urzyczyn</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 442 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies in logic and the foundations of mathematics</subfield><subfield code="v">v. 149</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance, minimal propositional logic corresponds to simply typed lambda-calculus, first-order logic corresponds to dependent types, second-order logic corresponds to polymorphic types, sequent calculus is related to explicit substitution, etc. The isomorphism has many aspects, even at the syntactic level: formulas correspond to types, proofs correspond to terms, provability corresponds to inhabitation, proof normalization corresponds to term reduction, etc. But there is more to the isomorphism than this. For instance, it is an old idea---due to Brouwer, Kolmogorov, and Heyting---that a constructive proof of an implication is a procedure that transforms proofs of the antecedent into proofs of the succedent; the Curry-Howard isomorphism gives syntactic representations of such procedures. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The Curry-Howard isomorphism also provides theoretical foundations for many modern proof-assistant systems (e.g. Coq). This book give an introduction to parts of proof theory and related aspects of type theory relevant for the Curry-Howard isomorphism. It can serve as an introduction to any or both of typed lambda-calculus and intuitionistic logic. Key features - The Curry-Howard Isomorphism treated as common theme - Reader-friendly introduction to two complementary subjects: Lambda-calculus and constructive logics - Thorough study of the connection between calculi and logics - Elaborate study of classical logics and control operators - Account of dialogue games for classical and intuitionistic logic - Theoretical foundations of computer-assisted reasoning The Curry-Howard Isomorphism treated as the common theme. Reader-friendly introduction to two complementary subjects: lambda-calculus and constructive logics Thorough study of the connection between calculi and logics. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Elaborate study of classical logics and control operators. Account of dialogue games for classical and intuitionistic logic. Theoretical foundations of computer-assisted reasoning</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 403-430) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lambda-calculus</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Programmeren (computers)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Transformations</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Curry-Howard isomorphism</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lambda calculus</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Proof theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curry-Howard isomorphism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lambda calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proof theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prädikatenlogik</subfield><subfield code="0">(DE-588)4046974-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Programmierung</subfield><subfield code="0">(DE-588)4076370-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Logik</subfield><subfield code="0">(DE-588)4164750-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analogie</subfield><subfield code="0">(DE-588)4197814-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Typisierter Lambda-Kalkül</subfield><subfield code="0">(DE-588)4270792-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweissystem</subfield><subfield code="0">(DE-588)4711800-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweistheorie</subfield><subfield code="0">(DE-588)4145177-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Peano-Arithmetik</subfield><subfield code="0">(DE-588)4290970-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Berechnung</subfield><subfield code="0">(DE-588)4120997-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lambda-Kalkül</subfield><subfield code="0">(DE-588)4166495-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Intuitionistische Logik</subfield><subfield code="0">(DE-588)4162199-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Berechnung</subfield><subfield code="0">(DE-588)4120997-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Analogie</subfield><subfield code="0">(DE-588)4197814-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Programmierung</subfield><subfield code="0">(DE-588)4076370-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Analogie</subfield><subfield code="0">(DE-588)4197814-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Peano-Arithmetik</subfield><subfield code="0">(DE-588)4290970-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Beweissystem</subfield><subfield code="0">(DE-588)4711800-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Prädikatenlogik</subfield><subfield code="0">(DE-588)4046974-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Programmierung</subfield><subfield code="0">(DE-588)4076370-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Analogie</subfield><subfield code="0">(DE-588)4197814-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="3"><subfield code="a">Beweissystem</subfield><subfield code="0">(DE-588)4711800-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Intuitionistische Logik</subfield><subfield code="0">(DE-588)4162199-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Analogie</subfield><subfield code="0">(DE-588)4197814-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="2"><subfield code="a">Typisierter Lambda-Kalkül</subfield><subfield code="0">(DE-588)4270792-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Kombinatorische Logik</subfield><subfield code="0">(DE-588)4164750-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Analogie</subfield><subfield code="0">(DE-588)4197814-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="2"><subfield code="a">Beweissystem</subfield><subfield code="0">(DE-588)4711800-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Kombinatorische Logik</subfield><subfield code="0">(DE-588)4164750-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2="1"><subfield code="a">Lambda-Kalkül</subfield><subfield code="0">(DE-588)4166495-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2="2"><subfield code="a">Beweistheorie</subfield><subfield code="0">(DE-588)4145177-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Urzyczyn, Paweł</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444520777</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754338</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317348 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:16Z |
institution | BVB |
isbn | 9780444520777 0444520775 9780080478920 0080478921 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754338 |
oclc_num | 162586983 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xiv, 442 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Elsevier |
record_format | marc |
series2 | Studies in logic and the foundations of mathematics |
spelling | Sørensen, Morten Heine Verfasser aut Lectures on the Curry-Howard isomorphism Morten Heine Sørensen, Paweł Urzyczyn 1st ed Amsterdam Elsevier 2006 1 Online-Ressource (xiv, 442 p.) txt rdacontent c rdamedia cr rdacarrier Studies in logic and the foundations of mathematics v. 149 The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance, minimal propositional logic corresponds to simply typed lambda-calculus, first-order logic corresponds to dependent types, second-order logic corresponds to polymorphic types, sequent calculus is related to explicit substitution, etc. The isomorphism has many aspects, even at the syntactic level: formulas correspond to types, proofs correspond to terms, provability corresponds to inhabitation, proof normalization corresponds to term reduction, etc. But there is more to the isomorphism than this. For instance, it is an old idea---due to Brouwer, Kolmogorov, and Heyting---that a constructive proof of an implication is a procedure that transforms proofs of the antecedent into proofs of the succedent; the Curry-Howard isomorphism gives syntactic representations of such procedures. The Curry-Howard isomorphism also provides theoretical foundations for many modern proof-assistant systems (e.g. Coq). This book give an introduction to parts of proof theory and related aspects of type theory relevant for the Curry-Howard isomorphism. It can serve as an introduction to any or both of typed lambda-calculus and intuitionistic logic. Key features - The Curry-Howard Isomorphism treated as common theme - Reader-friendly introduction to two complementary subjects: Lambda-calculus and constructive logics - Thorough study of the connection between calculi and logics - Elaborate study of classical logics and control operators - Account of dialogue games for classical and intuitionistic logic - Theoretical foundations of computer-assisted reasoning The Curry-Howard Isomorphism treated as the common theme. Reader-friendly introduction to two complementary subjects: lambda-calculus and constructive logics Thorough study of the connection between calculi and logics. Elaborate study of classical logics and control operators. Account of dialogue games for classical and intuitionistic logic. Theoretical foundations of computer-assisted reasoning Includes bibliographical references (p. 403-430) and index Lambda-calculus gtt Programmeren (computers) gtt MATHEMATICS / Transformations bisacsh Curry-Howard isomorphism fast Lambda calculus fast Proof theory fast Curry-Howard isomorphism Lambda calculus Proof theory Prädikatenlogik (DE-588)4046974-8 gnd rswk-swf Mathematische Logik (DE-588)4037951-6 gnd rswk-swf Programmierung (DE-588)4076370-5 gnd rswk-swf Beweis (DE-588)4132532-1 gnd rswk-swf Kombinatorische Logik (DE-588)4164750-6 gnd rswk-swf Analogie (DE-588)4197814-6 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Typisierter Lambda-Kalkül (DE-588)4270792-4 gnd rswk-swf Beweissystem (DE-588)4711800-3 gnd rswk-swf Beweistheorie (DE-588)4145177-6 gnd rswk-swf Peano-Arithmetik (DE-588)4290970-3 gnd rswk-swf Berechnung (DE-588)4120997-7 gnd rswk-swf Lambda-Kalkül (DE-588)4166495-4 gnd rswk-swf Intuitionistische Logik (DE-588)4162199-2 gnd rswk-swf Mathematik (DE-588)4037944-9 s Mathematische Logik (DE-588)4037951-6 s Berechnung (DE-588)4120997-7 s Beweis (DE-588)4132532-1 s Analogie (DE-588)4197814-6 s 1\p DE-604 Programmierung (DE-588)4076370-5 s Peano-Arithmetik (DE-588)4290970-3 s Beweissystem (DE-588)4711800-3 s 2\p DE-604 Prädikatenlogik (DE-588)4046974-8 s 3\p DE-604 Intuitionistische Logik (DE-588)4162199-2 s Typisierter Lambda-Kalkül (DE-588)4270792-4 s 4\p DE-604 Kombinatorische Logik (DE-588)4164750-6 s 5\p DE-604 Lambda-Kalkül (DE-588)4166495-4 s Beweistheorie (DE-588)4145177-6 s 6\p DE-604 Urzyczyn, Paweł Sonstige oth http://www.sciencedirect.com/science/book/9780444520777 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sørensen, Morten Heine Lectures on the Curry-Howard isomorphism Lambda-calculus gtt Programmeren (computers) gtt MATHEMATICS / Transformations bisacsh Curry-Howard isomorphism fast Lambda calculus fast Proof theory fast Curry-Howard isomorphism Lambda calculus Proof theory Prädikatenlogik (DE-588)4046974-8 gnd Mathematische Logik (DE-588)4037951-6 gnd Programmierung (DE-588)4076370-5 gnd Beweis (DE-588)4132532-1 gnd Kombinatorische Logik (DE-588)4164750-6 gnd Analogie (DE-588)4197814-6 gnd Mathematik (DE-588)4037944-9 gnd Typisierter Lambda-Kalkül (DE-588)4270792-4 gnd Beweissystem (DE-588)4711800-3 gnd Beweistheorie (DE-588)4145177-6 gnd Peano-Arithmetik (DE-588)4290970-3 gnd Berechnung (DE-588)4120997-7 gnd Lambda-Kalkül (DE-588)4166495-4 gnd Intuitionistische Logik (DE-588)4162199-2 gnd |
subject_GND | (DE-588)4046974-8 (DE-588)4037951-6 (DE-588)4076370-5 (DE-588)4132532-1 (DE-588)4164750-6 (DE-588)4197814-6 (DE-588)4037944-9 (DE-588)4270792-4 (DE-588)4711800-3 (DE-588)4145177-6 (DE-588)4290970-3 (DE-588)4120997-7 (DE-588)4166495-4 (DE-588)4162199-2 |
title | Lectures on the Curry-Howard isomorphism |
title_auth | Lectures on the Curry-Howard isomorphism |
title_exact_search | Lectures on the Curry-Howard isomorphism |
title_full | Lectures on the Curry-Howard isomorphism Morten Heine Sørensen, Paweł Urzyczyn |
title_fullStr | Lectures on the Curry-Howard isomorphism Morten Heine Sørensen, Paweł Urzyczyn |
title_full_unstemmed | Lectures on the Curry-Howard isomorphism Morten Heine Sørensen, Paweł Urzyczyn |
title_short | Lectures on the Curry-Howard isomorphism |
title_sort | lectures on the curry howard isomorphism |
topic | Lambda-calculus gtt Programmeren (computers) gtt MATHEMATICS / Transformations bisacsh Curry-Howard isomorphism fast Lambda calculus fast Proof theory fast Curry-Howard isomorphism Lambda calculus Proof theory Prädikatenlogik (DE-588)4046974-8 gnd Mathematische Logik (DE-588)4037951-6 gnd Programmierung (DE-588)4076370-5 gnd Beweis (DE-588)4132532-1 gnd Kombinatorische Logik (DE-588)4164750-6 gnd Analogie (DE-588)4197814-6 gnd Mathematik (DE-588)4037944-9 gnd Typisierter Lambda-Kalkül (DE-588)4270792-4 gnd Beweissystem (DE-588)4711800-3 gnd Beweistheorie (DE-588)4145177-6 gnd Peano-Arithmetik (DE-588)4290970-3 gnd Berechnung (DE-588)4120997-7 gnd Lambda-Kalkül (DE-588)4166495-4 gnd Intuitionistische Logik (DE-588)4162199-2 gnd |
topic_facet | Lambda-calculus Programmeren (computers) MATHEMATICS / Transformations Curry-Howard isomorphism Lambda calculus Proof theory Prädikatenlogik Mathematische Logik Programmierung Beweis Kombinatorische Logik Analogie Mathematik Typisierter Lambda-Kalkül Beweissystem Beweistheorie Peano-Arithmetik Berechnung Lambda-Kalkül Intuitionistische Logik |
url | http://www.sciencedirect.com/science/book/9780444520777 |
work_keys_str_mv | AT sørensenmortenheine lecturesonthecurryhowardisomorphism AT urzyczynpaweł lecturesonthecurryhowardisomorphism |