Non-self-adjoint boundary eigenvalue problems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
North-Holland
2003
|
Ausgabe: | 1st ed |
Schriftenreihe: | North-Holland mathematics studies
192 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This monograph provides a comprehensive treatment of expansion theorems for regular systems of first order differential equations and <IT>n</IT>-th order ordinary differential equations. In 10 chapters and one appendix, it provides a comprehensive treatment from abstract foundations to applications in physics and engineering. The focus is on non-self-adjoint problems. Bounded operators are associated to these problems, and Chapter 1 provides an in depth investigation of eigenfunctions and associated functions for bounded Fredholm valued operators in Banach spaces. Since every <IT>n</IT>-th order differential equation is equivalent to a first order system, the main techniques are developed for systems. Asymptotic fundamental systems are derived for a large class of systems of differential equations. Together with boundary conditions, which may depend polynomially on the eigenvalue parameter, this leads to the definition of Birkhoff and Stone regular eigenvalue problems. An effort is made to make the conditions relatively easy verifiable; this is illustrated with several applications in chapter 10. The contour integral method and estimates of the resolvent are used to prove expansion theorems. For Stone regular problems, not all functions are expandable, and again relatively easy verifiable conditions are given, in terms of auxiliary boundary conditions, for functions to be expandable. Chapter 10 deals exclusively with applications; in nine sections, various concrete problems such as the Orr-Sommerfeld equation, control of multiple beams, and an example from meteorology are investigated. Key features: & bull; Expansion Theorems for Ordinary Differential Equations & bull; Discusses Applications to Problems from Physics and Engineering & bull; Thorough Investigation of Asymptotic Fundamental Matrices and Systems & bull; Provides a Comprehensive Treatment & bull; Uses the Contour Integral Method & bull; Represents the Problems as Bounded Operators & bull; Investigates Canonical Systems of Eigen- and Associated Vectors for Operator Functions Includes bibliographical references (p. 475-495) and index |
Beschreibung: | 1 Online-Ressource (xviii, 500 p.) |
ISBN: | 9780444514479 0444514473 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317340 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780444514479 |9 978-0-444-51447-9 | ||
020 | |a 0444514473 |9 0-444-51447-3 | ||
035 | |a (ZDB-33-EBS)ocn162579804 | ||
035 | |a (OCoLC)162579804 | ||
035 | |a (DE-599)BVBBV042317340 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 515/.35 |2 22 | |
100 | 1 | |a Mennicken, Reinhard |e Verfasser |4 aut | |
245 | 1 | 0 | |a Non-self-adjoint boundary eigenvalue problems |c Reinhard Mennicken and Manfred Möller |
250 | |a 1st ed | ||
264 | 1 | |a Amsterdam |b North-Holland |c 2003 | |
300 | |a 1 Online-Ressource (xviii, 500 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a North-Holland mathematics studies |v 192 | |
500 | |a This monograph provides a comprehensive treatment of expansion theorems for regular systems of first order differential equations and <IT>n</IT>-th order ordinary differential equations. In 10 chapters and one appendix, it provides a comprehensive treatment from abstract foundations to applications in physics and engineering. The focus is on non-self-adjoint problems. Bounded operators are associated to these problems, and Chapter 1 provides an in depth investigation of eigenfunctions and associated functions for bounded Fredholm valued operators in Banach spaces. Since every <IT>n</IT>-th order differential equation is equivalent to a first order system, the main techniques are developed for systems. Asymptotic fundamental systems are derived for a large class of systems of differential equations. Together with boundary conditions, which may depend polynomially on the eigenvalue parameter, this leads to the definition of Birkhoff and Stone regular eigenvalue problems. | ||
500 | |a An effort is made to make the conditions relatively easy verifiable; this is illustrated with several applications in chapter 10. The contour integral method and estimates of the resolvent are used to prove expansion theorems. For Stone regular problems, not all functions are expandable, and again relatively easy verifiable conditions are given, in terms of auxiliary boundary conditions, for functions to be expandable. Chapter 10 deals exclusively with applications; in nine sections, various concrete problems such as the Orr-Sommerfeld equation, control of multiple beams, and an example from meteorology are investigated. | ||
500 | |a Key features: & bull; Expansion Theorems for Ordinary Differential Equations & bull; Discusses Applications to Problems from Physics and Engineering & bull; Thorough Investigation of Asymptotic Fundamental Matrices and Systems & bull; Provides a Comprehensive Treatment & bull; Uses the Contour Integral Method & bull; Represents the Problems as Bounded Operators & bull; Investigates Canonical Systems of Eigen- and Associated Vectors for Operator Functions | ||
500 | |a Includes bibliographical references (p. 475-495) and index | ||
650 | 4 | |a Problèmes aux limites | |
650 | 4 | |a Opérateurs non auto-adjoints | |
650 | 4 | |a Valeurs propres | |
650 | 4 | |a Équations différentielles | |
650 | 7 | |a Problemas de contorno |2 larpcal | |
650 | 7 | |a Operadores |2 larpcal | |
650 | 7 | |a Espaços de sobolev |2 larpcal | |
650 | 7 | |a Equações diferenciais |2 larpcal | |
650 | 7 | |a Boundary value problems |2 fast | |
650 | 7 | |a Differential equations |2 fast | |
650 | 7 | |a Eigenvalues |2 fast | |
650 | 7 | |a Nonselfadjoint operators |2 fast | |
650 | 4 | |a Boundary value problems | |
650 | 4 | |a Nonselfadjoint operators | |
650 | 4 | |a Eigenvalues | |
650 | 4 | |a Differential equations | |
650 | 0 | 7 | |a Randwertproblem |0 (DE-588)4048395-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Möller, Manfred |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444514479 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754330 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152913650515968 |
---|---|
any_adam_object | |
author | Mennicken, Reinhard |
author_facet | Mennicken, Reinhard |
author_role | aut |
author_sort | Mennicken, Reinhard |
author_variant | r m rm |
building | Verbundindex |
bvnumber | BV042317340 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn162579804 (OCoLC)162579804 (DE-599)BVBBV042317340 |
dewey-full | 515/.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.35 |
dewey-search | 515/.35 |
dewey-sort | 3515 235 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04284nmm a2200661zcb4500</leader><controlfield tag="001">BV042317340</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444514479</subfield><subfield code="9">978-0-444-51447-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444514473</subfield><subfield code="9">0-444-51447-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn162579804</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162579804</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317340</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.35</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mennicken, Reinhard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-self-adjoint boundary eigenvalue problems</subfield><subfield code="c">Reinhard Mennicken and Manfred Möller</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 500 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">North-Holland mathematics studies</subfield><subfield code="v">192</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph provides a comprehensive treatment of expansion theorems for regular systems of first order differential equations and <IT>n</IT>-th order ordinary differential equations. In 10 chapters and one appendix, it provides a comprehensive treatment from abstract foundations to applications in physics and engineering. The focus is on non-self-adjoint problems. Bounded operators are associated to these problems, and Chapter 1 provides an in depth investigation of eigenfunctions and associated functions for bounded Fredholm valued operators in Banach spaces. Since every <IT>n</IT>-th order differential equation is equivalent to a first order system, the main techniques are developed for systems. Asymptotic fundamental systems are derived for a large class of systems of differential equations. Together with boundary conditions, which may depend polynomially on the eigenvalue parameter, this leads to the definition of Birkhoff and Stone regular eigenvalue problems. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">An effort is made to make the conditions relatively easy verifiable; this is illustrated with several applications in chapter 10. The contour integral method and estimates of the resolvent are used to prove expansion theorems. For Stone regular problems, not all functions are expandable, and again relatively easy verifiable conditions are given, in terms of auxiliary boundary conditions, for functions to be expandable. Chapter 10 deals exclusively with applications; in nine sections, various concrete problems such as the Orr-Sommerfeld equation, control of multiple beams, and an example from meteorology are investigated. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Key features: & bull; Expansion Theorems for Ordinary Differential Equations & bull; Discusses Applications to Problems from Physics and Engineering & bull; Thorough Investigation of Asymptotic Fundamental Matrices and Systems & bull; Provides a Comprehensive Treatment & bull; Uses the Contour Integral Method & bull; Represents the Problems as Bounded Operators & bull; Investigates Canonical Systems of Eigen- and Associated Vectors for Operator Functions</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 475-495) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Problèmes aux limites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Opérateurs non auto-adjoints</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Valeurs propres</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Problemas de contorno</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Operadores</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Espaços de sobolev</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equações diferenciais</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Boundary value problems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Eigenvalues</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonselfadjoint operators</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonselfadjoint operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eigenvalues</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Möller, Manfred</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444514479</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754330</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317340 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:16Z |
institution | BVB |
isbn | 9780444514479 0444514473 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754330 |
oclc_num | 162579804 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xviii, 500 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | North-Holland |
record_format | marc |
series2 | North-Holland mathematics studies |
spelling | Mennicken, Reinhard Verfasser aut Non-self-adjoint boundary eigenvalue problems Reinhard Mennicken and Manfred Möller 1st ed Amsterdam North-Holland 2003 1 Online-Ressource (xviii, 500 p.) txt rdacontent c rdamedia cr rdacarrier North-Holland mathematics studies 192 This monograph provides a comprehensive treatment of expansion theorems for regular systems of first order differential equations and <IT>n</IT>-th order ordinary differential equations. In 10 chapters and one appendix, it provides a comprehensive treatment from abstract foundations to applications in physics and engineering. The focus is on non-self-adjoint problems. Bounded operators are associated to these problems, and Chapter 1 provides an in depth investigation of eigenfunctions and associated functions for bounded Fredholm valued operators in Banach spaces. Since every <IT>n</IT>-th order differential equation is equivalent to a first order system, the main techniques are developed for systems. Asymptotic fundamental systems are derived for a large class of systems of differential equations. Together with boundary conditions, which may depend polynomially on the eigenvalue parameter, this leads to the definition of Birkhoff and Stone regular eigenvalue problems. An effort is made to make the conditions relatively easy verifiable; this is illustrated with several applications in chapter 10. The contour integral method and estimates of the resolvent are used to prove expansion theorems. For Stone regular problems, not all functions are expandable, and again relatively easy verifiable conditions are given, in terms of auxiliary boundary conditions, for functions to be expandable. Chapter 10 deals exclusively with applications; in nine sections, various concrete problems such as the Orr-Sommerfeld equation, control of multiple beams, and an example from meteorology are investigated. Key features: & bull; Expansion Theorems for Ordinary Differential Equations & bull; Discusses Applications to Problems from Physics and Engineering & bull; Thorough Investigation of Asymptotic Fundamental Matrices and Systems & bull; Provides a Comprehensive Treatment & bull; Uses the Contour Integral Method & bull; Represents the Problems as Bounded Operators & bull; Investigates Canonical Systems of Eigen- and Associated Vectors for Operator Functions Includes bibliographical references (p. 475-495) and index Problèmes aux limites Opérateurs non auto-adjoints Valeurs propres Équations différentielles Problemas de contorno larpcal Operadores larpcal Espaços de sobolev larpcal Equações diferenciais larpcal Boundary value problems fast Differential equations fast Eigenvalues fast Nonselfadjoint operators fast Boundary value problems Nonselfadjoint operators Eigenvalues Differential equations Randwertproblem (DE-588)4048395-2 gnd rswk-swf Randwertproblem (DE-588)4048395-2 s 1\p DE-604 Möller, Manfred Sonstige oth http://www.sciencedirect.com/science/book/9780444514479 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mennicken, Reinhard Non-self-adjoint boundary eigenvalue problems Problèmes aux limites Opérateurs non auto-adjoints Valeurs propres Équations différentielles Problemas de contorno larpcal Operadores larpcal Espaços de sobolev larpcal Equações diferenciais larpcal Boundary value problems fast Differential equations fast Eigenvalues fast Nonselfadjoint operators fast Boundary value problems Nonselfadjoint operators Eigenvalues Differential equations Randwertproblem (DE-588)4048395-2 gnd |
subject_GND | (DE-588)4048395-2 |
title | Non-self-adjoint boundary eigenvalue problems |
title_auth | Non-self-adjoint boundary eigenvalue problems |
title_exact_search | Non-self-adjoint boundary eigenvalue problems |
title_full | Non-self-adjoint boundary eigenvalue problems Reinhard Mennicken and Manfred Möller |
title_fullStr | Non-self-adjoint boundary eigenvalue problems Reinhard Mennicken and Manfred Möller |
title_full_unstemmed | Non-self-adjoint boundary eigenvalue problems Reinhard Mennicken and Manfred Möller |
title_short | Non-self-adjoint boundary eigenvalue problems |
title_sort | non self adjoint boundary eigenvalue problems |
topic | Problèmes aux limites Opérateurs non auto-adjoints Valeurs propres Équations différentielles Problemas de contorno larpcal Operadores larpcal Espaços de sobolev larpcal Equações diferenciais larpcal Boundary value problems fast Differential equations fast Eigenvalues fast Nonselfadjoint operators fast Boundary value problems Nonselfadjoint operators Eigenvalues Differential equations Randwertproblem (DE-588)4048395-2 gnd |
topic_facet | Problèmes aux limites Opérateurs non auto-adjoints Valeurs propres Équations différentielles Problemas de contorno Operadores Espaços de sobolev Equações diferenciais Boundary value problems Differential equations Eigenvalues Nonselfadjoint operators Randwertproblem |
url | http://www.sciencedirect.com/science/book/9780444514479 |
work_keys_str_mv | AT mennickenreinhard nonselfadjointboundaryeigenvalueproblems AT mollermanfred nonselfadjointboundaryeigenvalueproblems |