Multivariate polysplines: applications to numerical and wavelet analysis
Saved in:
Bibliographic Details
Main Author: Kounchev, Ognyan (Author)
Format: Electronic eBook
Language:English
Published: San Diego, Calif. Academic Press ©2001
Subjects:
Online Access:Volltext
Item Description:Multivariate polysplines are a new mathematical technique that has arisen from a synthesis of approximation theory and the theory of partial differential equations. It is an invaluable means to interpolate practical data with smooth functions. Multivariate polysplines have applications in the design of surfaces and "smoothing" that are essential in computer aided geometric design (CAGD and CAD/CAM systems), geophysics, magnetism, geodesy, geography, wavelet analysis and signal and image processing. In many cases involving practical data in these areas, polysplines are proving more effective than well-established methods, such as kKriging, radial basis functions, thin plate splines and minimum curvature. Part 1 assumes no special knowledge of partial differential equations and is intended as a graduate level introduction to the topic Part 2 develops the theory of cardinal Polysplines, which is a natural generalization of Schoenberg's beautiful one-dimensional theory of cardinal splines. Part 3 constructs a wavelet analysis using cardinal Polysplines. The results parallel those found by Chui for the one-dimensional case. Part 4 considers the ultimate generalization of Polysplines - on manifolds, for a wide class of higher-order elliptic operators and satisfying a Holladay variational property
Includes bibliographical references (pages 487-490) and index
Physical Description:1 Online-Ressource (xiv, 498 pages)
ISBN:9780124224902
0124224903
9780080525006
0080525008

There is no print copy available.

Interlibrary loan Place Request Caution: Not in THWS collection! Get full text