Multivariate polysplines: applications to numerical and wavelet analysis
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
San Diego, Calif.
Academic Press
©2001
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Multivariate polysplines are a new mathematical technique that has arisen from a synthesis of approximation theory and the theory of partial differential equations. It is an invaluable means to interpolate practical data with smooth functions. Multivariate polysplines have applications in the design of surfaces and "smoothing" that are essential in computer aided geometric design (CAGD and CAD/CAM systems), geophysics, magnetism, geodesy, geography, wavelet analysis and signal and image processing. In many cases involving practical data in these areas, polysplines are proving more effective than well-established methods, such as kKriging, radial basis functions, thin plate splines and minimum curvature. Part 1 assumes no special knowledge of partial differential equations and is intended as a graduate level introduction to the topic Part 2 develops the theory of cardinal Polysplines, which is a natural generalization of Schoenberg's beautiful one-dimensional theory of cardinal splines. Part 3 constructs a wavelet analysis using cardinal Polysplines. The results parallel those found by Chui for the one-dimensional case. Part 4 considers the ultimate generalization of Polysplines - on manifolds, for a wide class of higher-order elliptic operators and satisfying a Holladay variational property Includes bibliographical references (pages 487-490) and index |
Beschreibung: | 1 Online-Ressource (xiv, 498 pages) |
ISBN: | 9780124224902 0124224903 9780080525006 0080525008 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042317312 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s2001 |||| o||u| ||||||eng d | ||
020 | |a 9780124224902 |9 978-0-12-422490-2 | ||
020 | |a 0124224903 |9 0-12-422490-3 | ||
020 | |a 9780080525006 |c electronic bk. |9 978-0-08-052500-6 | ||
020 | |a 0080525008 |c electronic bk. |9 0-08-052500-8 | ||
035 | |a (ZDB-33-EBS)ocn162574536 | ||
035 | |a (OCoLC)162574536 | ||
035 | |a (DE-599)BVBBV042317312 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 511/.42 |2 22 | |
100 | 1 | |a Kounchev, Ognyan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Multivariate polysplines |b applications to numerical and wavelet analysis |c Ognyan Kounchev |
264 | 1 | |a San Diego, Calif. |b Academic Press |c ©2001 | |
300 | |a 1 Online-Ressource (xiv, 498 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Multivariate polysplines are a new mathematical technique that has arisen from a synthesis of approximation theory and the theory of partial differential equations. It is an invaluable means to interpolate practical data with smooth functions. Multivariate polysplines have applications in the design of surfaces and "smoothing" that are essential in computer aided geometric design (CAGD and CAD/CAM systems), geophysics, magnetism, geodesy, geography, wavelet analysis and signal and image processing. In many cases involving practical data in these areas, polysplines are proving more effective than well-established methods, such as kKriging, radial basis functions, thin plate splines and minimum curvature. Part 1 assumes no special knowledge of partial differential equations and is intended as a graduate level introduction to the topic Part 2 develops the theory of cardinal Polysplines, which is a natural generalization of Schoenberg's beautiful one-dimensional theory of cardinal splines. Part 3 constructs a wavelet analysis using cardinal Polysplines. The results parallel those found by Chui for the one-dimensional case. Part 4 considers the ultimate generalization of Polysplines - on manifolds, for a wide class of higher-order elliptic operators and satisfying a Holladay variational property | ||
500 | |a Includes bibliographical references (pages 487-490) and index | ||
650 | 7 | |a MATHEMATICS / General |2 bisacsh | |
650 | 7 | |a Differential equations, Elliptic / Numerical solutions |2 fast | |
650 | 7 | |a Polyharmonic functions |2 fast | |
650 | 7 | |a Spline theory |2 fast | |
650 | 7 | |a PARTIAL DIFFERENTIAL EQUATIONS. |2 nasat | |
650 | 7 | |a ANALYSIS (MATHEMATICS) |2 nasat | |
650 | 7 | |a MATHEMATICAL MODELS. |2 nasat | |
650 | 7 | |a WAVELET ANALYSIS. |2 nasat | |
650 | 7 | |a APPLICATIONS OF MATHEMATICS. |2 nasat | |
650 | 4 | |a Spline theory | |
650 | 4 | |a Polyharmonic functions | |
650 | 4 | |a Differential equations, Elliptic |x Numerical solutions | |
650 | 0 | 7 | |a Spline |0 (DE-588)4182391-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrere Variable |0 (DE-588)4277015-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spline |0 (DE-588)4182391-6 |D s |
689 | 0 | 1 | |a Mehrere Variable |0 (DE-588)4277015-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780124224902 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754302 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152913603330048 |
---|---|
any_adam_object | |
author | Kounchev, Ognyan |
author_facet | Kounchev, Ognyan |
author_role | aut |
author_sort | Kounchev, Ognyan |
author_variant | o k ok |
building | Verbundindex |
bvnumber | BV042317312 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn162574536 (OCoLC)162574536 (DE-599)BVBBV042317312 |
dewey-full | 511/.42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.42 |
dewey-search | 511/.42 |
dewey-sort | 3511 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03531nmm a2200601zc 4500</leader><controlfield tag="001">BV042317312</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780124224902</subfield><subfield code="9">978-0-12-422490-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0124224903</subfield><subfield code="9">0-12-422490-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080525006</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-052500-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080525008</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-052500-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn162574536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162574536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317312</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.42</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kounchev, Ognyan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multivariate polysplines</subfield><subfield code="b">applications to numerical and wavelet analysis</subfield><subfield code="c">Ognyan Kounchev</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Diego, Calif.</subfield><subfield code="b">Academic Press</subfield><subfield code="c">©2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 498 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Multivariate polysplines are a new mathematical technique that has arisen from a synthesis of approximation theory and the theory of partial differential equations. It is an invaluable means to interpolate practical data with smooth functions. Multivariate polysplines have applications in the design of surfaces and "smoothing" that are essential in computer aided geometric design (CAGD and CAD/CAM systems), geophysics, magnetism, geodesy, geography, wavelet analysis and signal and image processing. In many cases involving practical data in these areas, polysplines are proving more effective than well-established methods, such as kKriging, radial basis functions, thin plate splines and minimum curvature. Part 1 assumes no special knowledge of partial differential equations and is intended as a graduate level introduction to the topic Part 2 develops the theory of cardinal Polysplines, which is a natural generalization of Schoenberg's beautiful one-dimensional theory of cardinal splines. Part 3 constructs a wavelet analysis using cardinal Polysplines. The results parallel those found by Chui for the one-dimensional case. Part 4 considers the ultimate generalization of Polysplines - on manifolds, for a wide class of higher-order elliptic operators and satisfying a Holladay variational property</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 487-490) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Elliptic / Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polyharmonic functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spline theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PARTIAL DIFFERENTIAL EQUATIONS.</subfield><subfield code="2">nasat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">ANALYSIS (MATHEMATICS)</subfield><subfield code="2">nasat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICAL MODELS.</subfield><subfield code="2">nasat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">WAVELET ANALYSIS.</subfield><subfield code="2">nasat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">APPLICATIONS OF MATHEMATICS.</subfield><subfield code="2">nasat</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spline theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polyharmonic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Elliptic</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spline</subfield><subfield code="0">(DE-588)4182391-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spline</subfield><subfield code="0">(DE-588)4182391-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780124224902</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754302</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317312 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:16Z |
institution | BVB |
isbn | 9780124224902 0124224903 9780080525006 0080525008 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754302 |
oclc_num | 162574536 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xiv, 498 pages) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Academic Press |
record_format | marc |
spelling | Kounchev, Ognyan Verfasser aut Multivariate polysplines applications to numerical and wavelet analysis Ognyan Kounchev San Diego, Calif. Academic Press ©2001 1 Online-Ressource (xiv, 498 pages) txt rdacontent c rdamedia cr rdacarrier Multivariate polysplines are a new mathematical technique that has arisen from a synthesis of approximation theory and the theory of partial differential equations. It is an invaluable means to interpolate practical data with smooth functions. Multivariate polysplines have applications in the design of surfaces and "smoothing" that are essential in computer aided geometric design (CAGD and CAD/CAM systems), geophysics, magnetism, geodesy, geography, wavelet analysis and signal and image processing. In many cases involving practical data in these areas, polysplines are proving more effective than well-established methods, such as kKriging, radial basis functions, thin plate splines and minimum curvature. Part 1 assumes no special knowledge of partial differential equations and is intended as a graduate level introduction to the topic Part 2 develops the theory of cardinal Polysplines, which is a natural generalization of Schoenberg's beautiful one-dimensional theory of cardinal splines. Part 3 constructs a wavelet analysis using cardinal Polysplines. The results parallel those found by Chui for the one-dimensional case. Part 4 considers the ultimate generalization of Polysplines - on manifolds, for a wide class of higher-order elliptic operators and satisfying a Holladay variational property Includes bibliographical references (pages 487-490) and index MATHEMATICS / General bisacsh Differential equations, Elliptic / Numerical solutions fast Polyharmonic functions fast Spline theory fast PARTIAL DIFFERENTIAL EQUATIONS. nasat ANALYSIS (MATHEMATICS) nasat MATHEMATICAL MODELS. nasat WAVELET ANALYSIS. nasat APPLICATIONS OF MATHEMATICS. nasat Spline theory Polyharmonic functions Differential equations, Elliptic Numerical solutions Spline (DE-588)4182391-6 gnd rswk-swf Mehrere Variable (DE-588)4277015-4 gnd rswk-swf Spline (DE-588)4182391-6 s Mehrere Variable (DE-588)4277015-4 s 1\p DE-604 http://www.sciencedirect.com/science/book/9780124224902 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kounchev, Ognyan Multivariate polysplines applications to numerical and wavelet analysis MATHEMATICS / General bisacsh Differential equations, Elliptic / Numerical solutions fast Polyharmonic functions fast Spline theory fast PARTIAL DIFFERENTIAL EQUATIONS. nasat ANALYSIS (MATHEMATICS) nasat MATHEMATICAL MODELS. nasat WAVELET ANALYSIS. nasat APPLICATIONS OF MATHEMATICS. nasat Spline theory Polyharmonic functions Differential equations, Elliptic Numerical solutions Spline (DE-588)4182391-6 gnd Mehrere Variable (DE-588)4277015-4 gnd |
subject_GND | (DE-588)4182391-6 (DE-588)4277015-4 |
title | Multivariate polysplines applications to numerical and wavelet analysis |
title_auth | Multivariate polysplines applications to numerical and wavelet analysis |
title_exact_search | Multivariate polysplines applications to numerical and wavelet analysis |
title_full | Multivariate polysplines applications to numerical and wavelet analysis Ognyan Kounchev |
title_fullStr | Multivariate polysplines applications to numerical and wavelet analysis Ognyan Kounchev |
title_full_unstemmed | Multivariate polysplines applications to numerical and wavelet analysis Ognyan Kounchev |
title_short | Multivariate polysplines |
title_sort | multivariate polysplines applications to numerical and wavelet analysis |
title_sub | applications to numerical and wavelet analysis |
topic | MATHEMATICS / General bisacsh Differential equations, Elliptic / Numerical solutions fast Polyharmonic functions fast Spline theory fast PARTIAL DIFFERENTIAL EQUATIONS. nasat ANALYSIS (MATHEMATICS) nasat MATHEMATICAL MODELS. nasat WAVELET ANALYSIS. nasat APPLICATIONS OF MATHEMATICS. nasat Spline theory Polyharmonic functions Differential equations, Elliptic Numerical solutions Spline (DE-588)4182391-6 gnd Mehrere Variable (DE-588)4277015-4 gnd |
topic_facet | MATHEMATICS / General Differential equations, Elliptic / Numerical solutions Polyharmonic functions Spline theory PARTIAL DIFFERENTIAL EQUATIONS. ANALYSIS (MATHEMATICS) MATHEMATICAL MODELS. WAVELET ANALYSIS. APPLICATIONS OF MATHEMATICS. Differential equations, Elliptic Numerical solutions Spline Mehrere Variable |
url | http://www.sciencedirect.com/science/book/9780124224902 |
work_keys_str_mv | AT kounchevognyan multivariatepolysplinesapplicationstonumericalandwaveletanalysis |