Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
San Diego
Academic Press
c1999
|
Schriftenreihe: | Mathematics in science and engineering
v. 198 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Includes bibliographical references (p. 313-335) and index This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'. This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models. In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research. A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. Key Features * A unique survey of many applications of fractional calculus * Presents basic theory * Includes a unified presentation of selected classical results, which are important for applications * Provides many examples * Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory * The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches * Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives |
Beschreibung: | 1 Online-Ressource (xxiv, 340 p.) |
ISBN: | 9780080531984 0080531989 9780125588409 0125588402 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317304 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1999 |||| o||u| ||||||eng d | ||
020 | |a 9780080531984 |c electronic bk. |9 978-0-08-053198-4 | ||
020 | |a 0080531989 |c electronic bk. |9 0-08-053198-9 | ||
020 | |a 9780125588409 |9 978-0-12-558840-9 | ||
020 | |a 0125588402 |9 0-12-558840-2 | ||
020 | |a 9780125588409 |9 978-0-12-558840-9 | ||
035 | |a (ZDB-33-EBS)ocn162132135 | ||
035 | |a (OCoLC)162132135 | ||
035 | |a (DE-599)BVBBV042317304 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 515 |2 22 | |
100 | 1 | |a Podlubny, Igor |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fractional differential equations |b an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications |c by Igor Podlubny |
264 | 1 | |a San Diego |b Academic Press |c c1999 | |
300 | |a 1 Online-Ressource (xxiv, 340 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics in science and engineering |v v. 198 | |
500 | |a Includes bibliographical references (p. 313-335) and index | ||
500 | |a This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'. This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models. In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research. A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. Key Features * A unique survey of many applications of fractional calculus * Presents basic theory * Includes a unified presentation of selected classical results, which are important for applications * Provides many examples * Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory * The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches * Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives | ||
650 | 7 | |a Differentiaalvergelijkingen |2 gtt | |
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 7 | |a Differential equations |2 fast | |
650 | 7 | |a Differential equations / Numerical solutions |2 fast | |
650 | 7 | |a Fractional calculus |2 fast | |
650 | 4 | |a Differential equations |x Numerical solutions | |
650 | 4 | |a Fractional calculus | |
650 | 4 | |a Differential equations | |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fraktal |0 (DE-588)4123220-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Laplace-Transformation |0 (DE-588)4034577-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Fraktal |0 (DE-588)4123220-3 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Laplace-Transformation |0 (DE-588)4034577-4 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780125588409 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754294 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152913572921344 |
---|---|
any_adam_object | |
author | Podlubny, Igor |
author_facet | Podlubny, Igor |
author_role | aut |
author_sort | Podlubny, Igor |
author_variant | i p ip |
building | Verbundindex |
bvnumber | BV042317304 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn162132135 (OCoLC)162132135 (DE-599)BVBBV042317304 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04494nmm a2200685zcb4500</leader><controlfield tag="001">BV042317304</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080531984</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-053198-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080531989</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-053198-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780125588409</subfield><subfield code="9">978-0-12-558840-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0125588402</subfield><subfield code="9">0-12-558840-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780125588409</subfield><subfield code="9">978-0-12-558840-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn162132135</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162132135</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317304</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Podlubny, Igor</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fractional differential equations</subfield><subfield code="b">an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications</subfield><subfield code="c">by Igor Podlubny</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Diego</subfield><subfield code="b">Academic Press</subfield><subfield code="c">c1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiv, 340 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics in science and engineering</subfield><subfield code="v">v. 198</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 313-335) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'. This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models. In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research. A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. Key Features * A unique survey of many applications of fractional calculus * Presents basic theory * Includes a unified presentation of selected classical results, which are important for applications * Provides many examples * Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory * The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches * Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentiaalvergelijkingen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations / Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fractional calculus</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Laplace-Transformation</subfield><subfield code="0">(DE-588)4034577-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Laplace-Transformation</subfield><subfield code="0">(DE-588)4034577-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780125588409</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754294</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV042317304 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:16Z |
institution | BVB |
isbn | 9780080531984 0080531989 9780125588409 0125588402 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754294 |
oclc_num | 162132135 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xxiv, 340 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Academic Press |
record_format | marc |
series2 | Mathematics in science and engineering |
spelling | Podlubny, Igor Verfasser aut Fractional differential equations an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications by Igor Podlubny San Diego Academic Press c1999 1 Online-Ressource (xxiv, 340 p.) txt rdacontent c rdamedia cr rdacarrier Mathematics in science and engineering v. 198 Includes bibliographical references (p. 313-335) and index This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'. This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models. In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research. A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. Key Features * A unique survey of many applications of fractional calculus * Presents basic theory * Includes a unified presentation of selected classical results, which are important for applications * Provides many examples * Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory * The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches * Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives Differentiaalvergelijkingen gtt MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Differential equations fast Differential equations / Numerical solutions fast Fractional calculus fast Differential equations Numerical solutions Fractional calculus Differential equations Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Fraktal (DE-588)4123220-3 gnd rswk-swf Laplace-Transformation (DE-588)4034577-4 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Differentialgleichung (DE-588)4012249-9 s 2\p DE-604 Fraktal (DE-588)4123220-3 s 3\p DE-604 Laplace-Transformation (DE-588)4034577-4 s 4\p DE-604 http://www.sciencedirect.com/science/book/9780125588409 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Podlubny, Igor Fractional differential equations an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications Differentiaalvergelijkingen gtt MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Differential equations fast Differential equations / Numerical solutions fast Fractional calculus fast Differential equations Numerical solutions Fractional calculus Differential equations Differentialgleichung (DE-588)4012249-9 gnd Fraktal (DE-588)4123220-3 gnd Laplace-Transformation (DE-588)4034577-4 gnd |
subject_GND | (DE-588)4012249-9 (DE-588)4123220-3 (DE-588)4034577-4 (DE-588)4151278-9 |
title | Fractional differential equations an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications |
title_auth | Fractional differential equations an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications |
title_exact_search | Fractional differential equations an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications |
title_full | Fractional differential equations an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications by Igor Podlubny |
title_fullStr | Fractional differential equations an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications by Igor Podlubny |
title_full_unstemmed | Fractional differential equations an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications by Igor Podlubny |
title_short | Fractional differential equations |
title_sort | fractional differential equations an introduction to fractional derivatives fractional differential equations to methods of their solution and some of their applications |
title_sub | an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications |
topic | Differentiaalvergelijkingen gtt MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Differential equations fast Differential equations / Numerical solutions fast Fractional calculus fast Differential equations Numerical solutions Fractional calculus Differential equations Differentialgleichung (DE-588)4012249-9 gnd Fraktal (DE-588)4123220-3 gnd Laplace-Transformation (DE-588)4034577-4 gnd |
topic_facet | Differentiaalvergelijkingen MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis Differential equations Differential equations / Numerical solutions Fractional calculus Differential equations Numerical solutions Differentialgleichung Fraktal Laplace-Transformation Einführung |
url | http://www.sciencedirect.com/science/book/9780125588409 |
work_keys_str_mv | AT podlubnyigor fractionaldifferentialequationsanintroductiontofractionalderivativesfractionaldifferentialequationstomethodsoftheirsolutionandsomeoftheirapplications |