Logical frameworks for truth and abstraction: an axiomatic study
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier Science B.V.
1996
|
Schriftenreihe: | Studies in logic and the foundations of mathematics
v. 135 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This English translation of the author's original work has been thoroughly revised, expanded and updated. The book covers logical systems known as <IT>type-free</IT> or <IT>self-referential</IT>. These traditionally arise from any discussion on logical and semantical paradoxes. This particular volume, however, is not concerned with paradoxes but with the investigation of type-free sytems to show that: (i) there are rich theories of self-application, involving both operations and truth which can serve as foundations for property theory and formal semantics; (ii) these theories provide a new outlook on classical topics, such as inductive definitions and predicative mathematics; (iii) they are particularly promising with regard to applications. Research arising from paradoxes has moved progressively closer to the mainstream of mathematical logic and has become much more prominent in the last twenty years. A number of significant developments, techniques and results have been discovered. Academics, students and researchers will find that the book contains a thorough overview of all relevant research in this field Includes bibliographical references (p. [425]-440) and index |
Beschreibung: | 1 Online-Ressource (xii, 461 p.) |
ISBN: | 9780444823069 0444823069 9780080535586 0080535585 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317264 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1996 |||| o||u| ||||||eng d | ||
020 | |a 9780444823069 |9 978-0-444-82306-9 | ||
020 | |a 0444823069 |9 0-444-82306-9 | ||
020 | |a 9780080535586 |c electronic bk. |9 978-0-08-053558-6 | ||
020 | |a 0080535585 |c electronic bk. |9 0-08-053558-5 | ||
035 | |a (ZDB-33-EBS)ocn162130519 | ||
035 | |a (OCoLC)162130519 | ||
035 | |a (DE-599)BVBBV042317264 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 511.3 |2 22 | |
100 | 1 | |a Cantini, Andrea |e Verfasser |4 aut | |
245 | 1 | 0 | |a Logical frameworks for truth and abstraction |b an axiomatic study |c Andrea Cantini |
264 | 1 | |a Amsterdam |b Elsevier Science B.V. |c 1996 | |
300 | |a 1 Online-Ressource (xii, 461 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Studies in logic and the foundations of mathematics |v v. 135 | |
500 | |a This English translation of the author's original work has been thoroughly revised, expanded and updated. The book covers logical systems known as <IT>type-free</IT> or <IT>self-referential</IT>. These traditionally arise from any discussion on logical and semantical paradoxes. This particular volume, however, is not concerned with paradoxes but with the investigation of type-free sytems to show that: (i) there are rich theories of self-application, involving both operations and truth which can serve as foundations for property theory and formal semantics; (ii) these theories provide a new outlook on classical topics, such as inductive definitions and predicative mathematics; (iii) they are particularly promising with regard to applications. Research arising from paradoxes has moved progressively closer to the mainstream of mathematical logic and has become much more prominent in the last twenty years. A number of significant developments, techniques and results have been discovered. Academics, students and researchers will find that the book contains a thorough overview of all relevant research in this field | ||
500 | |a Includes bibliographical references (p. [425]-440) and index | ||
650 | 4 | |a Mathematical logic | |
650 | 4 | |a Logique symbolique et mathématique | |
650 | 4 | |a Vérité | |
650 | 7 | |a MATHEMATICS / Infinity |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Logic |2 bisacsh | |
650 | 7 | |a Combinatorische logica |2 gtt | |
650 | 7 | |a Modale logica |2 gtt | |
650 | 7 | |a Logic, Symbolic and mathematical |2 fast | |
650 | 7 | |a Truth |2 fast | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Truth | |
650 | 0 | 7 | |a Wahrheitstheorie |0 (DE-588)4127146-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kombinatorische Logik |0 (DE-588)4164750-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahrheitstheorie |0 (DE-588)4127146-4 |D s |
689 | 0 | 1 | |a Kombinatorische Logik |0 (DE-588)4164750-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444823069 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754254 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152913501618176 |
---|---|
any_adam_object | |
author | Cantini, Andrea |
author_facet | Cantini, Andrea |
author_role | aut |
author_sort | Cantini, Andrea |
author_variant | a c ac |
building | Verbundindex |
bvnumber | BV042317264 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn162130519 (OCoLC)162130519 (DE-599)BVBBV042317264 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03289nmm a2200601zcb4500</leader><controlfield tag="001">BV042317264</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444823069</subfield><subfield code="9">978-0-444-82306-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444823069</subfield><subfield code="9">0-444-82306-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080535586</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-053558-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080535585</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-053558-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn162130519</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162130519</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317264</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cantini, Andrea</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Logical frameworks for truth and abstraction</subfield><subfield code="b">an axiomatic study</subfield><subfield code="c">Andrea Cantini</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier Science B.V.</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 461 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies in logic and the foundations of mathematics</subfield><subfield code="v">v. 135</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This English translation of the author's original work has been thoroughly revised, expanded and updated. The book covers logical systems known as <IT>type-free</IT> or <IT>self-referential</IT>. These traditionally arise from any discussion on logical and semantical paradoxes. This particular volume, however, is not concerned with paradoxes but with the investigation of type-free sytems to show that: (i) there are rich theories of self-application, involving both operations and truth which can serve as foundations for property theory and formal semantics; (ii) these theories provide a new outlook on classical topics, such as inductive definitions and predicative mathematics; (iii) they are particularly promising with regard to applications. Research arising from paradoxes has moved progressively closer to the mainstream of mathematical logic and has become much more prominent in the last twenty years. A number of significant developments, techniques and results have been discovered. Academics, students and researchers will find that the book contains a thorough overview of all relevant research in this field</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [425]-440) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical logic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logique symbolique et mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vérité</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Infinity</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Logic</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatorische logica</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modale logica</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logic, Symbolic and mathematical</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Truth</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Truth</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrheitstheorie</subfield><subfield code="0">(DE-588)4127146-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Logik</subfield><subfield code="0">(DE-588)4164750-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrheitstheorie</subfield><subfield code="0">(DE-588)4127146-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kombinatorische Logik</subfield><subfield code="0">(DE-588)4164750-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444823069</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754254</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317264 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:16Z |
institution | BVB |
isbn | 9780444823069 0444823069 9780080535586 0080535585 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754254 |
oclc_num | 162130519 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xii, 461 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Elsevier Science B.V. |
record_format | marc |
series2 | Studies in logic and the foundations of mathematics |
spelling | Cantini, Andrea Verfasser aut Logical frameworks for truth and abstraction an axiomatic study Andrea Cantini Amsterdam Elsevier Science B.V. 1996 1 Online-Ressource (xii, 461 p.) txt rdacontent c rdamedia cr rdacarrier Studies in logic and the foundations of mathematics v. 135 This English translation of the author's original work has been thoroughly revised, expanded and updated. The book covers logical systems known as <IT>type-free</IT> or <IT>self-referential</IT>. These traditionally arise from any discussion on logical and semantical paradoxes. This particular volume, however, is not concerned with paradoxes but with the investigation of type-free sytems to show that: (i) there are rich theories of self-application, involving both operations and truth which can serve as foundations for property theory and formal semantics; (ii) these theories provide a new outlook on classical topics, such as inductive definitions and predicative mathematics; (iii) they are particularly promising with regard to applications. Research arising from paradoxes has moved progressively closer to the mainstream of mathematical logic and has become much more prominent in the last twenty years. A number of significant developments, techniques and results have been discovered. Academics, students and researchers will find that the book contains a thorough overview of all relevant research in this field Includes bibliographical references (p. [425]-440) and index Mathematical logic Logique symbolique et mathématique Vérité MATHEMATICS / Infinity bisacsh MATHEMATICS / Logic bisacsh Combinatorische logica gtt Modale logica gtt Logic, Symbolic and mathematical fast Truth fast Logic, Symbolic and mathematical Truth Wahrheitstheorie (DE-588)4127146-4 gnd rswk-swf Kombinatorische Logik (DE-588)4164750-6 gnd rswk-swf Wahrheitstheorie (DE-588)4127146-4 s Kombinatorische Logik (DE-588)4164750-6 s 1\p DE-604 http://www.sciencedirect.com/science/book/9780444823069 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cantini, Andrea Logical frameworks for truth and abstraction an axiomatic study Mathematical logic Logique symbolique et mathématique Vérité MATHEMATICS / Infinity bisacsh MATHEMATICS / Logic bisacsh Combinatorische logica gtt Modale logica gtt Logic, Symbolic and mathematical fast Truth fast Logic, Symbolic and mathematical Truth Wahrheitstheorie (DE-588)4127146-4 gnd Kombinatorische Logik (DE-588)4164750-6 gnd |
subject_GND | (DE-588)4127146-4 (DE-588)4164750-6 |
title | Logical frameworks for truth and abstraction an axiomatic study |
title_auth | Logical frameworks for truth and abstraction an axiomatic study |
title_exact_search | Logical frameworks for truth and abstraction an axiomatic study |
title_full | Logical frameworks for truth and abstraction an axiomatic study Andrea Cantini |
title_fullStr | Logical frameworks for truth and abstraction an axiomatic study Andrea Cantini |
title_full_unstemmed | Logical frameworks for truth and abstraction an axiomatic study Andrea Cantini |
title_short | Logical frameworks for truth and abstraction |
title_sort | logical frameworks for truth and abstraction an axiomatic study |
title_sub | an axiomatic study |
topic | Mathematical logic Logique symbolique et mathématique Vérité MATHEMATICS / Infinity bisacsh MATHEMATICS / Logic bisacsh Combinatorische logica gtt Modale logica gtt Logic, Symbolic and mathematical fast Truth fast Logic, Symbolic and mathematical Truth Wahrheitstheorie (DE-588)4127146-4 gnd Kombinatorische Logik (DE-588)4164750-6 gnd |
topic_facet | Mathematical logic Logique symbolique et mathématique Vérité MATHEMATICS / Infinity MATHEMATICS / Logic Combinatorische logica Modale logica Logic, Symbolic and mathematical Truth Wahrheitstheorie Kombinatorische Logik |
url | http://www.sciencedirect.com/science/book/9780444823069 |
work_keys_str_mv | AT cantiniandrea logicalframeworksfortruthandabstractionanaxiomaticstudy |