Bitopological spaces: theory, relations with generalized algebraic structures, and applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier
c2005
|
Ausgabe: | 1st ed |
Schriftenreihe: | North-Holland mathematics studies
199 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This monograph is the first and an initial introduction to the theory of bitopological spaces and its applications. In particular, different families of subsets of bitopological spaces are introduced and various relations between two topologies are analyzed on one and the same set; the theory of dimension of bitopological spaces and the theory of Baire bitopological spaces are constructed, and various classes of mappings of bitopological spaces are studied. The previously known results as well the results obtained in this monograph are applied in analysis, potential theory, general topology, and theory of ordered topological spaces. Moreover, a high level of modern knowledge of bitopological spaces theory has made it possible to introduce and study algebra of new type, the corresponding representation of which brings one to the special class of bitopological spaces. It is beyond any doubt that in the nearest future the areas of essential applications will be the theories of linear topological spaces and topological groups, algebraic and differential topologies, the homotopy theory, not to mention other fundamental areas of modern mathematics such as geometry, mathematical logic, the probability theory and many other areas, including those of applied nature. Key Features: - First monograph is "Generalized Lattices" * The first introduction to the theory of bitopological spaces and its applications Includes bibliographical references (p. 321-332) and index |
Beschreibung: | 1 Online-Ressource (xiii, 415 p.) |
ISBN: | 9780444517937 0444517936 0080459463 9780080459462 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317256 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s2005 |||| o||u| ||||||eng d | ||
020 | |a 9780444517937 |9 978-0-444-51793-7 | ||
020 | |a 0444517936 |9 0-444-51793-6 | ||
020 | |a 0080459463 |c electronic bk. |9 0-08-045946-3 | ||
020 | |a 9780080459462 |c electronic bk. |9 978-0-08-045946-2 | ||
035 | |a (ZDB-33-EBS)ocn162130307 | ||
035 | |a (OCoLC)162130307 | ||
035 | |a (DE-599)BVBBV042317256 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 514.32 |2 22 | |
100 | 1 | |a Dvalishvili, B. P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Bitopological spaces |b theory, relations with generalized algebraic structures, and applications |c B.P. Dvalishvili |
250 | |a 1st ed | ||
264 | 1 | |a Amsterdam |b Elsevier |c c2005 | |
300 | |a 1 Online-Ressource (xiii, 415 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a North-Holland mathematics studies |v 199 | |
500 | |a This monograph is the first and an initial introduction to the theory of bitopological spaces and its applications. In particular, different families of subsets of bitopological spaces are introduced and various relations between two topologies are analyzed on one and the same set; the theory of dimension of bitopological spaces and the theory of Baire bitopological spaces are constructed, and various classes of mappings of bitopological spaces are studied. The previously known results as well the results obtained in this monograph are applied in analysis, potential theory, general topology, and theory of ordered topological spaces. Moreover, a high level of modern knowledge of bitopological spaces theory has made it possible to introduce and study algebra of new type, the corresponding representation of which brings one to the special class of bitopological spaces. It is beyond any doubt that in the nearest future the areas of essential applications will be the theories of linear topological spaces and topological groups, algebraic and differential topologies, the homotopy theory, not to mention other fundamental areas of modern mathematics such as geometry, mathematical logic, the probability theory and many other areas, including those of applied nature. Key Features: - First monograph is "Generalized Lattices" * The first introduction to the theory of bitopological spaces and its applications | ||
500 | |a Includes bibliographical references (p. 321-332) and index | ||
650 | 4 | |a Espaces topologiques | |
650 | 4 | |a Topologie | |
650 | 4 | |a Espaces métriques | |
650 | 7 | |a MATHEMATICS / Topology |2 bisacsh | |
650 | 7 | |a Metric spaces |2 fast | |
650 | 7 | |a Topological spaces |2 fast | |
650 | 7 | |a Topology |2 fast | |
650 | 4 | |a Topological spaces | |
650 | 4 | |a Topology | |
650 | 4 | |a Metric spaces | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444517937 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754246 |
Datensatz im Suchindex
_version_ | 1804152913497423872 |
---|---|
any_adam_object | |
author | Dvalishvili, B. P. |
author_facet | Dvalishvili, B. P. |
author_role | aut |
author_sort | Dvalishvili, B. P. |
author_variant | b p d bp bpd |
building | Verbundindex |
bvnumber | BV042317256 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn162130307 (OCoLC)162130307 (DE-599)BVBBV042317256 |
dewey-full | 514.32 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.32 |
dewey-search | 514.32 |
dewey-sort | 3514.32 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03146nmm a2200529zcb4500</leader><controlfield tag="001">BV042317256</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s2005 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444517937</subfield><subfield code="9">978-0-444-51793-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444517936</subfield><subfield code="9">0-444-51793-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080459463</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-045946-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080459462</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-045946-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn162130307</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162130307</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317256</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.32</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dvalishvili, B. P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bitopological spaces</subfield><subfield code="b">theory, relations with generalized algebraic structures, and applications</subfield><subfield code="c">B.P. Dvalishvili</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">c2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 415 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">North-Holland mathematics studies</subfield><subfield code="v">199</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph is the first and an initial introduction to the theory of bitopological spaces and its applications. In particular, different families of subsets of bitopological spaces are introduced and various relations between two topologies are analyzed on one and the same set; the theory of dimension of bitopological spaces and the theory of Baire bitopological spaces are constructed, and various classes of mappings of bitopological spaces are studied. The previously known results as well the results obtained in this monograph are applied in analysis, potential theory, general topology, and theory of ordered topological spaces. Moreover, a high level of modern knowledge of bitopological spaces theory has made it possible to introduce and study algebra of new type, the corresponding representation of which brings one to the special class of bitopological spaces. It is beyond any doubt that in the nearest future the areas of essential applications will be the theories of linear topological spaces and topological groups, algebraic and differential topologies, the homotopy theory, not to mention other fundamental areas of modern mathematics such as geometry, mathematical logic, the probability theory and many other areas, including those of applied nature. Key Features: - First monograph is "Generalized Lattices" * The first introduction to the theory of bitopological spaces and its applications</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 321-332) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Espaces topologiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topologie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Espaces métriques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metric spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topological spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topology</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metric spaces</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444517937</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754246</subfield></datafield></record></collection> |
id | DE-604.BV042317256 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:16Z |
institution | BVB |
isbn | 9780444517937 0444517936 0080459463 9780080459462 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754246 |
oclc_num | 162130307 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xiii, 415 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Elsevier |
record_format | marc |
series2 | North-Holland mathematics studies |
spelling | Dvalishvili, B. P. Verfasser aut Bitopological spaces theory, relations with generalized algebraic structures, and applications B.P. Dvalishvili 1st ed Amsterdam Elsevier c2005 1 Online-Ressource (xiii, 415 p.) txt rdacontent c rdamedia cr rdacarrier North-Holland mathematics studies 199 This monograph is the first and an initial introduction to the theory of bitopological spaces and its applications. In particular, different families of subsets of bitopological spaces are introduced and various relations between two topologies are analyzed on one and the same set; the theory of dimension of bitopological spaces and the theory of Baire bitopological spaces are constructed, and various classes of mappings of bitopological spaces are studied. The previously known results as well the results obtained in this monograph are applied in analysis, potential theory, general topology, and theory of ordered topological spaces. Moreover, a high level of modern knowledge of bitopological spaces theory has made it possible to introduce and study algebra of new type, the corresponding representation of which brings one to the special class of bitopological spaces. It is beyond any doubt that in the nearest future the areas of essential applications will be the theories of linear topological spaces and topological groups, algebraic and differential topologies, the homotopy theory, not to mention other fundamental areas of modern mathematics such as geometry, mathematical logic, the probability theory and many other areas, including those of applied nature. Key Features: - First monograph is "Generalized Lattices" * The first introduction to the theory of bitopological spaces and its applications Includes bibliographical references (p. 321-332) and index Espaces topologiques Topologie Espaces métriques MATHEMATICS / Topology bisacsh Metric spaces fast Topological spaces fast Topology fast Topological spaces Topology Metric spaces http://www.sciencedirect.com/science/book/9780444517937 Verlag Volltext |
spellingShingle | Dvalishvili, B. P. Bitopological spaces theory, relations with generalized algebraic structures, and applications Espaces topologiques Topologie Espaces métriques MATHEMATICS / Topology bisacsh Metric spaces fast Topological spaces fast Topology fast Topological spaces Topology Metric spaces |
title | Bitopological spaces theory, relations with generalized algebraic structures, and applications |
title_auth | Bitopological spaces theory, relations with generalized algebraic structures, and applications |
title_exact_search | Bitopological spaces theory, relations with generalized algebraic structures, and applications |
title_full | Bitopological spaces theory, relations with generalized algebraic structures, and applications B.P. Dvalishvili |
title_fullStr | Bitopological spaces theory, relations with generalized algebraic structures, and applications B.P. Dvalishvili |
title_full_unstemmed | Bitopological spaces theory, relations with generalized algebraic structures, and applications B.P. Dvalishvili |
title_short | Bitopological spaces |
title_sort | bitopological spaces theory relations with generalized algebraic structures and applications |
title_sub | theory, relations with generalized algebraic structures, and applications |
topic | Espaces topologiques Topologie Espaces métriques MATHEMATICS / Topology bisacsh Metric spaces fast Topological spaces fast Topology fast Topological spaces Topology Metric spaces |
topic_facet | Espaces topologiques Topologie Espaces métriques MATHEMATICS / Topology Metric spaces Topological spaces Topology |
url | http://www.sciencedirect.com/science/book/9780444517937 |
work_keys_str_mv | AT dvalishvilibp bitopologicalspacestheoryrelationswithgeneralizedalgebraicstructuresandapplications |