Volterra integral and differential equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier
2005
|
Ausgabe: | 2nd ed |
Schriftenreihe: | Mathematics in science and engineering
v. 202 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Includes bibliographical references (p. 340-348) and indexes Most mathematicians, engineers, and many other scientists are well-acquainted with theory and application of ordinary differential equations. This book seeks to present Volterra integral and functional differential equations in that same framwork, allowing the readers to parlay their knowledge of ordinary differential equations into theory and application of the more general problems. Thus, the presentation starts slowly with very familiar concepts and shows how these are generalized in a natural way to problems involving a memory. Liapunov's direct method is gently introduced and applied t |
Beschreibung: | 1 Online-Ressource (x, 353 p.) |
ISBN: | 0080459552 9780080459554 0444517863 9780444517869 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317221 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s2005 |||| o||u| ||||||eng d | ||
020 | |a 0080459552 |c electronic bk. |9 0-08-045955-2 | ||
020 | |a 9780080459554 |c electronic bk. |9 978-0-08-045955-4 | ||
020 | |a 0444517863 |c alk. paper |9 0-444-51786-3 | ||
020 | |a 9780444517869 |c alk. paper |9 978-0-444-51786-9 | ||
035 | |a (OCoLC)73693087 | ||
035 | |a (DE-599)BVBBV042317221 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-706 | ||
082 | 0 | |a 515/.45 |2 22 | |
100 | 1 | |a Burton, T. A., (Theodore Allen) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Volterra integral and differential equations |c T.A. Burton |
250 | |a 2nd ed | ||
264 | 1 | |a Amsterdam |b Elsevier |c 2005 | |
300 | |a 1 Online-Ressource (x, 353 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics in science and engineering |v v. 202 | |
500 | |a Includes bibliographical references (p. 340-348) and indexes | ||
500 | |a Most mathematicians, engineers, and many other scientists are well-acquainted with theory and application of ordinary differential equations. This book seeks to present Volterra integral and functional differential equations in that same framwork, allowing the readers to parlay their knowledge of ordinary differential equations into theory and application of the more general problems. Thus, the presentation starts slowly with very familiar concepts and shows how these are generalized in a natural way to problems involving a memory. Liapunov's direct method is gently introduced and applied t | ||
650 | 4 | |a Volterra equations. Integro-differential equations | |
650 | 7 | |a Integro-differential equations |2 fast | |
650 | 7 | |a Volterra equations |2 fast | |
650 | 4 | |a Volterra equations | |
650 | 4 | |a Integro-differential equations | |
650 | 0 | 7 | |a Volterra-Integralgleichung |0 (DE-588)4234593-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Volterra-Gleichungen |0 (DE-588)4137459-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integrodifferentialgleichung |0 (DE-588)4161939-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Volterra-Gleichungen |0 (DE-588)4137459-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Integrodifferentialgleichung |0 (DE-588)4161939-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Volterra-Integralgleichung |0 (DE-588)4234593-5 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444517869 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754212 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152913426120704 |
---|---|
any_adam_object | |
author | Burton, T. A., (Theodore Allen) |
author_facet | Burton, T. A., (Theodore Allen) |
author_role | aut |
author_sort | Burton, T. A., (Theodore Allen) |
author_variant | t a t a b tata tatab |
building | Verbundindex |
bvnumber | BV042317221 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (OCoLC)73693087 (DE-599)BVBBV042317221 |
dewey-full | 515/.45 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.45 |
dewey-search | 515/.45 |
dewey-sort | 3515 245 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2nd ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02937nmm a2200601zcb4500</leader><controlfield tag="001">BV042317221</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s2005 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080459552</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-045955-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080459554</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-045955-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444517863</subfield><subfield code="c">alk. paper</subfield><subfield code="9">0-444-51786-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444517869</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-0-444-51786-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)73693087</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317221</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.45</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burton, T. A., (Theodore Allen)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Volterra integral and differential equations</subfield><subfield code="c">T.A. Burton</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 353 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics in science and engineering</subfield><subfield code="v">v. 202</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 340-348) and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Most mathematicians, engineers, and many other scientists are well-acquainted with theory and application of ordinary differential equations. This book seeks to present Volterra integral and functional differential equations in that same framwork, allowing the readers to parlay their knowledge of ordinary differential equations into theory and application of the more general problems. Thus, the presentation starts slowly with very familiar concepts and shows how these are generalized in a natural way to problems involving a memory. Liapunov's direct method is gently introduced and applied t</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volterra equations. Integro-differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integro-differential equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Volterra equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volterra equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integro-differential equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Volterra-Integralgleichung</subfield><subfield code="0">(DE-588)4234593-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Volterra-Gleichungen</subfield><subfield code="0">(DE-588)4137459-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrodifferentialgleichung</subfield><subfield code="0">(DE-588)4161939-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Volterra-Gleichungen</subfield><subfield code="0">(DE-588)4137459-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Integrodifferentialgleichung</subfield><subfield code="0">(DE-588)4161939-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Volterra-Integralgleichung</subfield><subfield code="0">(DE-588)4234593-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444517869</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754212</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317221 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:16Z |
institution | BVB |
isbn | 0080459552 9780080459554 0444517863 9780444517869 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754212 |
oclc_num | 73693087 |
open_access_boolean | |
owner | DE-1046 DE-706 |
owner_facet | DE-1046 DE-706 |
physical | 1 Online-Ressource (x, 353 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Elsevier |
record_format | marc |
series2 | Mathematics in science and engineering |
spelling | Burton, T. A., (Theodore Allen) Verfasser aut Volterra integral and differential equations T.A. Burton 2nd ed Amsterdam Elsevier 2005 1 Online-Ressource (x, 353 p.) txt rdacontent c rdamedia cr rdacarrier Mathematics in science and engineering v. 202 Includes bibliographical references (p. 340-348) and indexes Most mathematicians, engineers, and many other scientists are well-acquainted with theory and application of ordinary differential equations. This book seeks to present Volterra integral and functional differential equations in that same framwork, allowing the readers to parlay their knowledge of ordinary differential equations into theory and application of the more general problems. Thus, the presentation starts slowly with very familiar concepts and shows how these are generalized in a natural way to problems involving a memory. Liapunov's direct method is gently introduced and applied t Volterra equations. Integro-differential equations Integro-differential equations fast Volterra equations fast Volterra equations Integro-differential equations Volterra-Integralgleichung (DE-588)4234593-5 gnd rswk-swf Volterra-Gleichungen (DE-588)4137459-9 gnd rswk-swf Integrodifferentialgleichung (DE-588)4161939-0 gnd rswk-swf Volterra-Gleichungen (DE-588)4137459-9 s 1\p DE-604 Integrodifferentialgleichung (DE-588)4161939-0 s 2\p DE-604 Volterra-Integralgleichung (DE-588)4234593-5 s 3\p DE-604 http://www.sciencedirect.com/science/book/9780444517869 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Burton, T. A., (Theodore Allen) Volterra integral and differential equations Volterra equations. Integro-differential equations Integro-differential equations fast Volterra equations fast Volterra equations Integro-differential equations Volterra-Integralgleichung (DE-588)4234593-5 gnd Volterra-Gleichungen (DE-588)4137459-9 gnd Integrodifferentialgleichung (DE-588)4161939-0 gnd |
subject_GND | (DE-588)4234593-5 (DE-588)4137459-9 (DE-588)4161939-0 |
title | Volterra integral and differential equations |
title_auth | Volterra integral and differential equations |
title_exact_search | Volterra integral and differential equations |
title_full | Volterra integral and differential equations T.A. Burton |
title_fullStr | Volterra integral and differential equations T.A. Burton |
title_full_unstemmed | Volterra integral and differential equations T.A. Burton |
title_short | Volterra integral and differential equations |
title_sort | volterra integral and differential equations |
topic | Volterra equations. Integro-differential equations Integro-differential equations fast Volterra equations fast Volterra equations Integro-differential equations Volterra-Integralgleichung (DE-588)4234593-5 gnd Volterra-Gleichungen (DE-588)4137459-9 gnd Integrodifferentialgleichung (DE-588)4161939-0 gnd |
topic_facet | Volterra equations. Integro-differential equations Integro-differential equations Volterra equations Volterra-Integralgleichung Volterra-Gleichungen Integrodifferentialgleichung |
url | http://www.sciencedirect.com/science/book/9780444517869 |
work_keys_str_mv | AT burtontatheodoreallen volterraintegralanddifferentialequations |