Complex numbers: lattice simulation and zeta function applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Chichester
Horwood
2007
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Includes bibliographical references and index An informative and useful account of complex numbers that includes historical anecdotes, ideas for further research, outlines of theory and a detailed analysis of the ever-elusory Riemann hypothesis. Stephen Roy assumes no detailed mathematical knowledge on the part of the reader and provides a fascinating description of the use of this fundamental idea within the two subject areas of lattice simulation and number theory. Complex Numbers offers a fresh and critical approach to research-based implementation of the mathematical concept of imaginary numbers. Detailed coverage includes:Riemann's zeta function: an investigation of the non-trivial roots by Euler-Maclaurin summation.Basic theory: logarithms, indices, arithmetic and integration procedures are described.Lattice simulation: the role of complex numbers in Paul Ewald's important work of the I 920s is analysed.Mangoldt's study of the xi function: close attention is given to the derivation of N(T) formulae by contour integration.Analytical calculations: used extensively to illustrate important theoretical aspects.Glossary: over 80 terms included in the text are defined. Offers a fresh and critical approach to the research-based implication of complex numbersIncludes historical anecdotes, ideas for further research, outlines of theory and a detailed analysis of the Riemann hypothesisBridges any gaps that might exist between the two worlds of lattice sums and number theory |
Beschreibung: | 1 Online-Ressource (xii, 131 pages) |
ISBN: | 9780857099426 0857099426 1904275257 9781904275251 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042317156 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780857099426 |c electronic bk. |9 978-0-85709-942-6 | ||
020 | |a 0857099426 |c electronic bk. |9 0-85709-942-6 | ||
020 | |a 1904275257 |9 1-904275-25-7 | ||
020 | |a 9781904275251 |9 978-1-904275-25-1 | ||
035 | |a (OCoLC)869282228 | ||
035 | |a (DE-599)BVBBV042317156 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 512.788 |2 22 | |
100 | 1 | |a Roy, Stephen C., (Stephen Campbell) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Complex numbers |b lattice simulation and zeta function applications |c Stephen C. Roy |
264 | 1 | |a Chichester |b Horwood |c 2007 | |
300 | |a 1 Online-Ressource (xii, 131 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a An informative and useful account of complex numbers that includes historical anecdotes, ideas for further research, outlines of theory and a detailed analysis of the ever-elusory Riemann hypothesis. Stephen Roy assumes no detailed mathematical knowledge on the part of the reader and provides a fascinating description of the use of this fundamental idea within the two subject areas of lattice simulation and number theory. Complex Numbers offers a fresh and critical approach to research-based implementation of the mathematical concept of imaginary numbers. Detailed coverage includes:Riemann's zeta function: an investigation of the non-trivial roots by Euler-Maclaurin summation.Basic theory: logarithms, indices, arithmetic and integration procedures are described.Lattice simulation: the role of complex numbers in Paul Ewald's important work of the I 920s is analysed.Mangoldt's study of the xi function: close attention is given to the derivation of N(T) formulae by contour integration.Analytical calculations: used extensively to illustrate important theoretical aspects.Glossary: over 80 terms included in the text are defined. Offers a fresh and critical approach to the research-based implication of complex numbersIncludes historical anecdotes, ideas for further research, outlines of theory and a detailed analysis of the Riemann hypothesisBridges any gaps that might exist between the two worlds of lattice sums and number theory | ||
650 | 4 | |a Nombres complexes | |
650 | 4 | |a Treillis, Théorie des | |
650 | 4 | |a Fonctions zêta | |
650 | 7 | |a Functions, Zeta |2 fast | |
650 | 7 | |a Lattice theory |2 fast | |
650 | 7 | |a Numbers, Complex |2 fast | |
650 | 7 | |a MATHEMATICS / Algebra / Intermediate |2 bisacsh | |
650 | 4 | |a Numbers, Complex | |
650 | 4 | |a Lattice theory | |
650 | 4 | |a Functions, Zeta | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9781904275251 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754147 |
Datensatz im Suchindex
_version_ | 1804152913280368640 |
---|---|
any_adam_object | |
author | Roy, Stephen C., (Stephen Campbell) |
author_facet | Roy, Stephen C., (Stephen Campbell) |
author_role | aut |
author_sort | Roy, Stephen C., (Stephen Campbell) |
author_variant | s c s c r scsc scscr |
building | Verbundindex |
bvnumber | BV042317156 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (OCoLC)869282228 (DE-599)BVBBV042317156 |
dewey-full | 512.788 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.788 |
dewey-search | 512.788 |
dewey-sort | 3512.788 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03063nmm a2200493zc 4500</leader><controlfield tag="001">BV042317156</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780857099426</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-85709-942-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0857099426</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-85709-942-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1904275257</subfield><subfield code="9">1-904275-25-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781904275251</subfield><subfield code="9">978-1-904275-25-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869282228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317156</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.788</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roy, Stephen C., (Stephen Campbell)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex numbers</subfield><subfield code="b">lattice simulation and zeta function applications</subfield><subfield code="c">Stephen C. Roy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester</subfield><subfield code="b">Horwood</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 131 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">An informative and useful account of complex numbers that includes historical anecdotes, ideas for further research, outlines of theory and a detailed analysis of the ever-elusory Riemann hypothesis. Stephen Roy assumes no detailed mathematical knowledge on the part of the reader and provides a fascinating description of the use of this fundamental idea within the two subject areas of lattice simulation and number theory. Complex Numbers offers a fresh and critical approach to research-based implementation of the mathematical concept of imaginary numbers. Detailed coverage includes:Riemann's zeta function: an investigation of the non-trivial roots by Euler-Maclaurin summation.Basic theory: logarithms, indices, arithmetic and integration procedures are described.Lattice simulation: the role of complex numbers in Paul Ewald's important work of the I 920s is analysed.Mangoldt's study of the xi function: close attention is given to the derivation of N(T) formulae by contour integration.Analytical calculations: used extensively to illustrate important theoretical aspects.Glossary: over 80 terms included in the text are defined. Offers a fresh and critical approach to the research-based implication of complex numbersIncludes historical anecdotes, ideas for further research, outlines of theory and a detailed analysis of the Riemann hypothesisBridges any gaps that might exist between the two worlds of lattice sums and number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nombres complexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Treillis, Théorie des</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions zêta</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functions, Zeta</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lattice theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numbers, Complex</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Intermediate</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numbers, Complex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lattice theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, Zeta</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9781904275251</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754147</subfield></datafield></record></collection> |
id | DE-604.BV042317156 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:16Z |
institution | BVB |
isbn | 9780857099426 0857099426 1904275257 9781904275251 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754147 |
oclc_num | 869282228 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xii, 131 pages) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Horwood |
record_format | marc |
spelling | Roy, Stephen C., (Stephen Campbell) Verfasser aut Complex numbers lattice simulation and zeta function applications Stephen C. Roy Chichester Horwood 2007 1 Online-Ressource (xii, 131 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index An informative and useful account of complex numbers that includes historical anecdotes, ideas for further research, outlines of theory and a detailed analysis of the ever-elusory Riemann hypothesis. Stephen Roy assumes no detailed mathematical knowledge on the part of the reader and provides a fascinating description of the use of this fundamental idea within the two subject areas of lattice simulation and number theory. Complex Numbers offers a fresh and critical approach to research-based implementation of the mathematical concept of imaginary numbers. Detailed coverage includes:Riemann's zeta function: an investigation of the non-trivial roots by Euler-Maclaurin summation.Basic theory: logarithms, indices, arithmetic and integration procedures are described.Lattice simulation: the role of complex numbers in Paul Ewald's important work of the I 920s is analysed.Mangoldt's study of the xi function: close attention is given to the derivation of N(T) formulae by contour integration.Analytical calculations: used extensively to illustrate important theoretical aspects.Glossary: over 80 terms included in the text are defined. Offers a fresh and critical approach to the research-based implication of complex numbersIncludes historical anecdotes, ideas for further research, outlines of theory and a detailed analysis of the Riemann hypothesisBridges any gaps that might exist between the two worlds of lattice sums and number theory Nombres complexes Treillis, Théorie des Fonctions zêta Functions, Zeta fast Lattice theory fast Numbers, Complex fast MATHEMATICS / Algebra / Intermediate bisacsh Numbers, Complex Lattice theory Functions, Zeta http://www.sciencedirect.com/science/book/9781904275251 Verlag Volltext |
spellingShingle | Roy, Stephen C., (Stephen Campbell) Complex numbers lattice simulation and zeta function applications Nombres complexes Treillis, Théorie des Fonctions zêta Functions, Zeta fast Lattice theory fast Numbers, Complex fast MATHEMATICS / Algebra / Intermediate bisacsh Numbers, Complex Lattice theory Functions, Zeta |
title | Complex numbers lattice simulation and zeta function applications |
title_auth | Complex numbers lattice simulation and zeta function applications |
title_exact_search | Complex numbers lattice simulation and zeta function applications |
title_full | Complex numbers lattice simulation and zeta function applications Stephen C. Roy |
title_fullStr | Complex numbers lattice simulation and zeta function applications Stephen C. Roy |
title_full_unstemmed | Complex numbers lattice simulation and zeta function applications Stephen C. Roy |
title_short | Complex numbers |
title_sort | complex numbers lattice simulation and zeta function applications |
title_sub | lattice simulation and zeta function applications |
topic | Nombres complexes Treillis, Théorie des Fonctions zêta Functions, Zeta fast Lattice theory fast Numbers, Complex fast MATHEMATICS / Algebra / Intermediate bisacsh Numbers, Complex Lattice theory Functions, Zeta |
topic_facet | Nombres complexes Treillis, Théorie des Fonctions zêta Functions, Zeta Lattice theory Numbers, Complex MATHEMATICS / Algebra / Intermediate |
url | http://www.sciencedirect.com/science/book/9781904275251 |
work_keys_str_mv | AT roystephencstephencampbell complexnumberslatticesimulationandzetafunctionapplications |