Molecular mechanisms in visual transduction:
Saved in:
Format: | Electronic eBook |
---|---|
Language: | English |
Published: |
Amsterdam
Elsevier
2000
|
Edition: | 1st ed |
Series: | Handbook of biological physics
v. 3 |
Subjects: | |
Online Access: | Volltext |
Item Description: | Molecular mechanisms in visual transduction is presently one of the most intensely studied areas in the field of signal transduction research in biological cells. Because the sense of vision plays a primary role in animal biology, and thus has been subject to long evolutionary development, the molecular and cellular mechanisms underlying vision have a high degree of sensitivity and versatility. The aims of visual transduction research are first to determine which molecules participate, and then to understand how they act in concert to produce the exquisite electrical responses of the photoreceptor cells. Since the 1940s [1] we have known that rod vision begins with the capture of a quantum of energy, a photon, by a visual pigment molecule, rhodopsin. As the function of photon absorption is to convert the visual pigment molecule into a G-protein activating state, the structural details of the visual pigments must be explained from the perspective of their role in activating their specific G-proteins. Thus, Chapters 1-3 of this Handbook extensively cover the physico-chemical molecular characteristics of the vertebrate rhodopsins. Following photoconversion and G-protein activation, the phototransduction cascade leads to modifications of the population of closed and open ion channels in the photoreceptor plasma membrane, and thereby to the electrical response. The nature of the channels of vertebrate photoreceptors is examined in Chapter 4, and Chapter 5 integrates the present body of knowledge of the activation steps in the cascade into a quantitative framework. Once the phototransduction cascade is activated, it must be subsequently silenced. The various molecular mechanisms participating in inactivation are treated in Chapters 1-4 and especially Chapter 5. Molecular biology is now an indispensable tool in signal transduction studies. Numerous vertebrate (Chapter 6) and invertebrate (Chapter 7) visual pigments have been characterized and cloned. The genetics and evolutionary aspects of this great subfamily of G-protein activating receptors are intriguing as they present a natural probe for the intimate relationship between structure and function of the visual pigments. Understanding the spectral characteristics from the molecular composition can be expected to Includes bibliographical references and index |
Physical Description: | 1 Online-Ressource (xiv, 581 p.) |
ISBN: | 9780444501028 0444501029 9780080536774 0080536778 |
Staff View
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042305432 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s2000 xx o|||| 00||| eng d | ||
020 | |a 9780444501028 |9 978-0-444-50102-8 | ||
020 | |a 0444501029 |9 0-444-50102-9 | ||
020 | |a 9780080536774 |c electronic bk. |9 978-0-08-053677-4 | ||
020 | |a 0080536778 |c electronic bk. |9 0-08-053677-8 | ||
035 | |a (OCoLC)162131149 | ||
035 | |a (DE-599)BVBBV042305432 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 573.8/8 |2 22 | |
245 | 1 | 0 | |a Molecular mechanisms in visual transduction |c editors, D.G. Stavenga, W.J. DeGrip, E.N. Pugh, Jr |
250 | |a 1st ed | ||
264 | 1 | |a Amsterdam |b Elsevier |c 2000 | |
300 | |a 1 Online-Ressource (xiv, 581 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Handbook of biological physics |v v. 3 | |
500 | |a Molecular mechanisms in visual transduction is presently one of the most intensely studied areas in the field of signal transduction research in biological cells. Because the sense of vision plays a primary role in animal biology, and thus has been subject to long evolutionary development, the molecular and cellular mechanisms underlying vision have a high degree of sensitivity and versatility. The aims of visual transduction research are first to determine which molecules participate, and then to understand how they act in concert to produce the exquisite electrical responses of the photoreceptor cells. Since the 1940s [1] we have known that rod vision begins with the capture of a quantum of energy, a photon, by a visual pigment molecule, rhodopsin. | ||
500 | |a As the function of photon absorption is to convert the visual pigment molecule into a G-protein activating state, the structural details of the visual pigments must be explained from the perspective of their role in activating their specific G-proteins. Thus, Chapters 1-3 of this Handbook extensively cover the physico-chemical molecular characteristics of the vertebrate rhodopsins. Following photoconversion and G-protein activation, the phototransduction cascade leads to modifications of the population of closed and open ion channels in the photoreceptor plasma membrane, and thereby to the electrical response. The nature of the channels of vertebrate photoreceptors is examined in Chapter 4, and Chapter 5 integrates the present body of knowledge of the activation steps in the cascade into a quantitative framework. Once the phototransduction cascade is activated, it must be subsequently silenced. | ||
500 | |a The various molecular mechanisms participating in inactivation are treated in Chapters 1-4 and especially Chapter 5. Molecular biology is now an indispensable tool in signal transduction studies. Numerous vertebrate (Chapter 6) and invertebrate (Chapter 7) visual pigments have been characterized and cloned. The genetics and evolutionary aspects of this great subfamily of G-protein activating receptors are intriguing as they present a natural probe for the intimate relationship between structure and function of the visual pigments. Understanding the spectral characteristics from the molecular composition can be expected to | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Signal Transduction | |
650 | 4 | |a Photoreceptors | |
650 | 4 | |a Phototransduction | |
650 | 4 | |a Pigments visuels | |
650 | 4 | |a Régulation cellulaire | |
650 | 4 | |a Transduction du signal cellulaire | |
650 | 7 | |a SOCIAL SCIENCE / Anthropology / Physical |2 bisacsh | |
650 | 4 | |a Signal transduction | |
650 | 4 | |a Visual pigments |x Mechanism of action | |
650 | 4 | |a Cellular control mechanisms | |
650 | 4 | |a Cellular signal transduction | |
650 | 0 | 7 | |a Photorezeption |0 (DE-588)4375281-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sehzelle |0 (DE-588)4180719-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Signaltransduktion |0 (DE-588)4318717-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Molekularbiologie |0 (DE-588)4039983-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Photorezeption |0 (DE-588)4375281-0 |D s |
689 | 0 | 1 | |a Molekularbiologie |0 (DE-588)4039983-7 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Sehzelle |0 (DE-588)4180719-4 |D s |
689 | 1 | 1 | |a Signaltransduktion |0 (DE-588)4318717-1 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
700 | 1 | |a DeGrip, W. J. |e Sonstige |4 oth | |
700 | 1 | |a Pugh, E. N. |e Sonstige |4 oth | |
700 | 1 | |a Stavenga, D. G. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444501028 |x Verlag |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-33-ESD | ||
912 | |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027742424 |
Record in the Search Index
_version_ | 1825215666971475968 |
---|---|
adam_text | |
any_adam_object | |
building | Verbundindex |
bvnumber | BV042305432 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (OCoLC)162131149 (DE-599)BVBBV042305432 |
dewey-full | 573.8/8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 573 - Specific physiological systems in animals |
dewey-raw | 573.8/8 |
dewey-search | 573.8/8 |
dewey-sort | 3573.8 18 |
dewey-tens | 570 - Biology |
discipline | Biologie |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV042305432</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s2000 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444501028</subfield><subfield code="9">978-0-444-50102-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444501029</subfield><subfield code="9">0-444-50102-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080536774</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-053677-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080536778</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-053677-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162131149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042305432</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">573.8/8</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular mechanisms in visual transduction</subfield><subfield code="c">editors, D.G. Stavenga, W.J. DeGrip, E.N. Pugh, Jr</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 581 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Handbook of biological physics</subfield><subfield code="v">v. 3</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Molecular mechanisms in visual transduction is presently one of the most intensely studied areas in the field of signal transduction research in biological cells. Because the sense of vision plays a primary role in animal biology, and thus has been subject to long evolutionary development, the molecular and cellular mechanisms underlying vision have a high degree of sensitivity and versatility. The aims of visual transduction research are first to determine which molecules participate, and then to understand how they act in concert to produce the exquisite electrical responses of the photoreceptor cells. Since the 1940s [1] we have known that rod vision begins with the capture of a quantum of energy, a photon, by a visual pigment molecule, rhodopsin.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">As the function of photon absorption is to convert the visual pigment molecule into a G-protein activating state, the structural details of the visual pigments must be explained from the perspective of their role in activating their specific G-proteins. Thus, Chapters 1-3 of this Handbook extensively cover the physico-chemical molecular characteristics of the vertebrate rhodopsins. Following photoconversion and G-protein activation, the phototransduction cascade leads to modifications of the population of closed and open ion channels in the photoreceptor plasma membrane, and thereby to the electrical response. The nature of the channels of vertebrate photoreceptors is examined in Chapter 4, and Chapter 5 integrates the present body of knowledge of the activation steps in the cascade into a quantitative framework. Once the phototransduction cascade is activated, it must be subsequently silenced.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The various molecular mechanisms participating in inactivation are treated in Chapters 1-4 and especially Chapter 5. Molecular biology is now an indispensable tool in signal transduction studies. Numerous vertebrate (Chapter 6) and invertebrate (Chapter 7) visual pigments have been characterized and cloned. The genetics and evolutionary aspects of this great subfamily of G-protein activating receptors are intriguing as they present a natural probe for the intimate relationship between structure and function of the visual pigments. Understanding the spectral characteristics from the molecular composition can be expected to</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal Transduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photoreceptors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phototransduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pigments visuels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Régulation cellulaire</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transduction du signal cellulaire</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SOCIAL SCIENCE / Anthropology / Physical</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal transduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visual pigments</subfield><subfield code="x">Mechanism of action</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cellular control mechanisms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cellular signal transduction</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Photorezeption</subfield><subfield code="0">(DE-588)4375281-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sehzelle</subfield><subfield code="0">(DE-588)4180719-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Signaltransduktion</subfield><subfield code="0">(DE-588)4318717-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekularbiologie</subfield><subfield code="0">(DE-588)4039983-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Photorezeption</subfield><subfield code="0">(DE-588)4375281-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Molekularbiologie</subfield><subfield code="0">(DE-588)4039983-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Sehzelle</subfield><subfield code="0">(DE-588)4180719-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Signaltransduktion</subfield><subfield code="0">(DE-588)4318717-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">DeGrip, W. J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pugh, E. N.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stavenga, D. G.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444501028</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027742424</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042305432 |
illustrated | Not Illustrated |
indexdate | 2025-02-27T13:01:43Z |
institution | BVB |
isbn | 9780444501028 0444501029 9780080536774 0080536778 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027742424 |
oclc_num | 162131149 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xiv, 581 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Elsevier |
record_format | marc |
series2 | Handbook of biological physics |
spelling | Molecular mechanisms in visual transduction editors, D.G. Stavenga, W.J. DeGrip, E.N. Pugh, Jr 1st ed Amsterdam Elsevier 2000 1 Online-Ressource (xiv, 581 p.) txt rdacontent c rdamedia cr rdacarrier Handbook of biological physics v. 3 Molecular mechanisms in visual transduction is presently one of the most intensely studied areas in the field of signal transduction research in biological cells. Because the sense of vision plays a primary role in animal biology, and thus has been subject to long evolutionary development, the molecular and cellular mechanisms underlying vision have a high degree of sensitivity and versatility. The aims of visual transduction research are first to determine which molecules participate, and then to understand how they act in concert to produce the exquisite electrical responses of the photoreceptor cells. Since the 1940s [1] we have known that rod vision begins with the capture of a quantum of energy, a photon, by a visual pigment molecule, rhodopsin. As the function of photon absorption is to convert the visual pigment molecule into a G-protein activating state, the structural details of the visual pigments must be explained from the perspective of their role in activating their specific G-proteins. Thus, Chapters 1-3 of this Handbook extensively cover the physico-chemical molecular characteristics of the vertebrate rhodopsins. Following photoconversion and G-protein activation, the phototransduction cascade leads to modifications of the population of closed and open ion channels in the photoreceptor plasma membrane, and thereby to the electrical response. The nature of the channels of vertebrate photoreceptors is examined in Chapter 4, and Chapter 5 integrates the present body of knowledge of the activation steps in the cascade into a quantitative framework. Once the phototransduction cascade is activated, it must be subsequently silenced. The various molecular mechanisms participating in inactivation are treated in Chapters 1-4 and especially Chapter 5. Molecular biology is now an indispensable tool in signal transduction studies. Numerous vertebrate (Chapter 6) and invertebrate (Chapter 7) visual pigments have been characterized and cloned. The genetics and evolutionary aspects of this great subfamily of G-protein activating receptors are intriguing as they present a natural probe for the intimate relationship between structure and function of the visual pigments. Understanding the spectral characteristics from the molecular composition can be expected to Includes bibliographical references and index Signal Transduction Photoreceptors Phototransduction Pigments visuels Régulation cellulaire Transduction du signal cellulaire SOCIAL SCIENCE / Anthropology / Physical bisacsh Signal transduction Visual pigments Mechanism of action Cellular control mechanisms Cellular signal transduction Photorezeption (DE-588)4375281-0 gnd rswk-swf Sehzelle (DE-588)4180719-4 gnd rswk-swf Signaltransduktion (DE-588)4318717-1 gnd rswk-swf Molekularbiologie (DE-588)4039983-7 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Photorezeption (DE-588)4375281-0 s Molekularbiologie (DE-588)4039983-7 s 2\p DE-604 Sehzelle (DE-588)4180719-4 s Signaltransduktion (DE-588)4318717-1 s 3\p DE-604 DeGrip, W. J. Sonstige oth Pugh, E. N. Sonstige oth Stavenga, D. G. Sonstige oth http://www.sciencedirect.com/science/book/9780444501028 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Molecular mechanisms in visual transduction Signal Transduction Photoreceptors Phototransduction Pigments visuels Régulation cellulaire Transduction du signal cellulaire SOCIAL SCIENCE / Anthropology / Physical bisacsh Signal transduction Visual pigments Mechanism of action Cellular control mechanisms Cellular signal transduction Photorezeption (DE-588)4375281-0 gnd Sehzelle (DE-588)4180719-4 gnd Signaltransduktion (DE-588)4318717-1 gnd Molekularbiologie (DE-588)4039983-7 gnd |
subject_GND | (DE-588)4375281-0 (DE-588)4180719-4 (DE-588)4318717-1 (DE-588)4039983-7 (DE-588)4143413-4 |
title | Molecular mechanisms in visual transduction |
title_auth | Molecular mechanisms in visual transduction |
title_exact_search | Molecular mechanisms in visual transduction |
title_full | Molecular mechanisms in visual transduction editors, D.G. Stavenga, W.J. DeGrip, E.N. Pugh, Jr |
title_fullStr | Molecular mechanisms in visual transduction editors, D.G. Stavenga, W.J. DeGrip, E.N. Pugh, Jr |
title_full_unstemmed | Molecular mechanisms in visual transduction editors, D.G. Stavenga, W.J. DeGrip, E.N. Pugh, Jr |
title_short | Molecular mechanisms in visual transduction |
title_sort | molecular mechanisms in visual transduction |
topic | Signal Transduction Photoreceptors Phototransduction Pigments visuels Régulation cellulaire Transduction du signal cellulaire SOCIAL SCIENCE / Anthropology / Physical bisacsh Signal transduction Visual pigments Mechanism of action Cellular control mechanisms Cellular signal transduction Photorezeption (DE-588)4375281-0 gnd Sehzelle (DE-588)4180719-4 gnd Signaltransduktion (DE-588)4318717-1 gnd Molekularbiologie (DE-588)4039983-7 gnd |
topic_facet | Signal Transduction Photoreceptors Phototransduction Pigments visuels Régulation cellulaire Transduction du signal cellulaire SOCIAL SCIENCE / Anthropology / Physical Signal transduction Visual pigments Mechanism of action Cellular control mechanisms Cellular signal transduction Photorezeption Sehzelle Signaltransduktion Molekularbiologie Aufsatzsammlung |
url | http://www.sciencedirect.com/science/book/9780444501028 |
work_keys_str_mv | AT degripwj molecularmechanismsinvisualtransduction AT pughen molecularmechanismsinvisualtransduction AT stavengadg molecularmechanismsinvisualtransduction |