Mathematical analysis fundamentals:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier
2014
|
Ausgabe: | First edition |
Schriftenreihe: | Elsevier insights
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Includes bibliographical references The author's goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric options. Friendly and well-rounded presentation of pre-analysis topics such as sets, proof techniques and systems of numbers. Deeper discussion of the basic concept of convergence for the system of real numbers, pointing out its specific features, and for metric spaces Presentation of Riemann integration and its place in the whole integration theory for single variable, including the Kurzweil-Henstock integration Elements of multiplicative calculus aiming to demonstrate the non-absoluteness of Newtonian calculus |
Beschreibung: | 1 Online-Ressource (1 online resource) |
ISBN: | 9780128010501 0128010509 9780128010013 0128010010 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042300120 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s2014 |||| o||u| ||||||eng d | ||
020 | |a 9780128010501 |c electronic bk. |9 978-0-12-801050-1 | ||
020 | |a 0128010509 |c electronic bk. |9 0-12-801050-9 | ||
020 | |a 9780128010013 |9 978-0-12-801001-3 | ||
020 | |a 0128010010 |9 0-12-801001-0 | ||
035 | |a (OCoLC)875558741 | ||
035 | |a (DE-599)BVBBV042300120 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 515 |2 23 | |
100 | 1 | |a Bashirov, Agamirza E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematical analysis fundamentals |c A. E. Bashirov |
250 | |a First edition | ||
264 | 1 | |a Amsterdam |b Elsevier |c 2014 | |
300 | |a 1 Online-Ressource (1 online resource) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Elsevier insights | |
500 | |a Includes bibliographical references | ||
500 | |a The author's goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric options. Friendly and well-rounded presentation of pre-analysis topics such as sets, proof techniques and systems of numbers. Deeper discussion of the basic concept of convergence for the system of real numbers, pointing out its specific features, and for metric spaces Presentation of Riemann integration and its place in the whole integration theory for single variable, including the Kurzweil-Henstock integration Elements of multiplicative calculus aiming to demonstrate the non-absoluteness of Newtonian calculus | ||
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 7 | |a Mathematical analysis |2 fast | |
650 | 4 | |a Mathematical analysis | |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780128010013 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027737112 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152877169508352 |
---|---|
any_adam_object | |
author | Bashirov, Agamirza E. |
author_facet | Bashirov, Agamirza E. |
author_role | aut |
author_sort | Bashirov, Agamirza E. |
author_variant | a e b ae aeb |
building | Verbundindex |
bvnumber | BV042300120 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (OCoLC)875558741 (DE-599)BVBBV042300120 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02772nmm a2200493zc 4500</leader><controlfield tag="001">BV042300120</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128010501</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-12-801050-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128010509</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-12-801050-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128010013</subfield><subfield code="9">978-0-12-801001-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128010010</subfield><subfield code="9">0-12-801001-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)875558741</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042300120</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bashirov, Agamirza E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical analysis fundamentals</subfield><subfield code="c">A. E. Bashirov</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 online resource)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Elsevier insights</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The author's goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric options. Friendly and well-rounded presentation of pre-analysis topics such as sets, proof techniques and systems of numbers. Deeper discussion of the basic concept of convergence for the system of real numbers, pointing out its specific features, and for metric spaces Presentation of Riemann integration and its place in the whole integration theory for single variable, including the Kurzweil-Henstock integration Elements of multiplicative calculus aiming to demonstrate the non-absoluteness of Newtonian calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780128010013</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027737112</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042300120 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:17:41Z |
institution | BVB |
isbn | 9780128010501 0128010509 9780128010013 0128010010 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027737112 |
oclc_num | 875558741 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (1 online resource) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Elsevier |
record_format | marc |
series2 | Elsevier insights |
spelling | Bashirov, Agamirza E. Verfasser aut Mathematical analysis fundamentals A. E. Bashirov First edition Amsterdam Elsevier 2014 1 Online-Ressource (1 online resource) txt rdacontent c rdamedia cr rdacarrier Elsevier insights Includes bibliographical references The author's goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric options. Friendly and well-rounded presentation of pre-analysis topics such as sets, proof techniques and systems of numbers. Deeper discussion of the basic concept of convergence for the system of real numbers, pointing out its specific features, and for metric spaces Presentation of Riemann integration and its place in the whole integration theory for single variable, including the Kurzweil-Henstock integration Elements of multiplicative calculus aiming to demonstrate the non-absoluteness of Newtonian calculus MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Mathematical analysis fast Mathematical analysis Analysis (DE-588)4001865-9 gnd rswk-swf Analysis (DE-588)4001865-9 s 1\p DE-604 http://www.sciencedirect.com/science/book/9780128010013 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bashirov, Agamirza E. Mathematical analysis fundamentals MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Mathematical analysis fast Mathematical analysis Analysis (DE-588)4001865-9 gnd |
subject_GND | (DE-588)4001865-9 |
title | Mathematical analysis fundamentals |
title_auth | Mathematical analysis fundamentals |
title_exact_search | Mathematical analysis fundamentals |
title_full | Mathematical analysis fundamentals A. E. Bashirov |
title_fullStr | Mathematical analysis fundamentals A. E. Bashirov |
title_full_unstemmed | Mathematical analysis fundamentals A. E. Bashirov |
title_short | Mathematical analysis fundamentals |
title_sort | mathematical analysis fundamentals |
topic | MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Mathematical analysis fast Mathematical analysis Analysis (DE-588)4001865-9 gnd |
topic_facet | MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis Mathematical analysis Analysis |
url | http://www.sciencedirect.com/science/book/9780128010013 |
work_keys_str_mv | AT bashirovagamirzae mathematicalanalysisfundamentals |