Arithmetic geometry over global function fields:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Basel [u.a.]
Birkhäuser Springer
2014
|
Schriftenreihe: | Advanced courses in mathematics - CRM Barcelona
|
Schlagworte: | |
Online-Zugang: | DE-634 DE-861 DE-91 DE-384 DE-19 DE-703 DE-20 DE-739 Volltext Inhaltsverzeichnis Abstract |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783034808521 9783034808538 |
DOI: | 10.1007/978-3-0348-0853-8 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV042216433 | ||
003 | DE-604 | ||
005 | 20150210 | ||
007 | cr|uuu---uuuuu | ||
008 | 141201s2014 xx o|||| 00||| eng d | ||
015 | |a 14,O12 |2 dnb | ||
016 | 7 | |a 1060892642 |2 DE-101 | |
020 | |a 9783034808521 |9 978-3-0348-0852-1 | ||
020 | |a 9783034808538 |c Online |9 978-3-0348-0853-8 | ||
024 | 7 | |a 10.1007/978-3-0348-0853-8 |2 doi | |
024 | 3 | |a 9783034808538 | |
035 | |a (OCoLC)899614413 | ||
035 | |a (DE-599)DNB1060892642 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91 |a DE-739 |a DE-20 |a DE-19 |a DE-634 |a DE-861 |a DE-384 |a DE-83 | ||
082 | 0 | |a 512.7 | |
084 | |a MAT 000 |2 stub | ||
084 | |a MAT 144f |2 stub | ||
084 | |a 510 |2 sdnb | ||
084 | |a MAT 122f |2 stub | ||
245 | 1 | 0 | |a Arithmetic geometry over global function fields |c Gebhard Böckle ... |
264 | 1 | |a Basel [u.a.] |b Birkhäuser Springer |c 2014 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advanced courses in mathematics - CRM Barcelona | |
650 | 0 | 7 | |a Arithmetische Geometrie |0 (DE-588)4131383-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zetafunktion |0 (DE-588)4190764-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraischer Funktionenkörper |0 (DE-588)4141850-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a L-Funktion |0 (DE-588)4137026-0 |2 gnd |9 rswk-swf |
653 | |a Graduate | ||
653 | |a L-functions | ||
653 | |a cohomology theory | ||
653 | |a t-motives | ||
653 | |a Drinfeld modules | ||
653 | |a Gamma functions | ||
653 | |a Zeta and Multizeta functions | ||
653 | |a Electronic book text | ||
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Algebraischer Funktionenkörper |0 (DE-588)4141850-5 |D s |
689 | 0 | 1 | |a L-Funktion |0 (DE-588)4137026-0 |D s |
689 | 0 | 2 | |a Zetafunktion |0 (DE-588)4190764-4 |D s |
689 | 0 | 3 | |a Arithmetische Geometrie |0 (DE-588)4131383-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Böckle, Gebhard |d 1964- |e Sonstige |0 (DE-588)1052651798 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-0853-8 |x Verlag |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027655028&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027655028&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-SMA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027655028 | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0853-8 |l DE-634 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0853-8 |l DE-861 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0853-8 |l DE-91 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0853-8 |l DE-384 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0853-8 |l DE-19 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0853-8 |l DE-703 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0853-8 |l DE-20 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0853-8 |l DE-739 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1825578095629828096 |
---|---|
adam_text |
ARITHMETIC GEOMETRY OVER GLOBAL FUNCTION FIELDS
/ BOECKLE, GEBHARD
: 2014
TABLE OF CONTENTS / INHALTSVERZEICHNIS
COHOMOLOGICAL THEORY OF CRYSTALS OVER FUNCTION FIELDS AND APPLICATIONS
ON GEOMETRIC IWASAWA THEORY AND SPECIAL VALUES OF ZETA FUNCTIONS
THE ONGOING BINOMIAL REVOLUTION
ARITHMETIC OF GAMMA, ZETA AND MULTIZETA VALUES FOR FUNCTION FIELDS
CURVES AND JACOBIANS OVER FUNCTION FIELDS
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
ARITHMETIC GEOMETRY OVER GLOBAL FUNCTION FIELDS
/ BOECKLE, GEBHARD
: 2014
ABSTRACT / INHALTSTEXT
THIS VOLUME COLLECTS THE TEXTS OF FIVE COURSES GIVEN IN THE ARITHMETIC
GEOMETRY RESEARCH PROGRAMME 2009–2010 AT THE CRM BARCELONA. ALL OF
THEM DEAL WITH CHARACTERISTIC P GLOBAL FIELDS; THE COMMON THEME AROUND
WHICH THEY ARE CENTERED IS THE ARITHMETIC OF L-FUNCTIONS (AND OTHER
SPECIAL FUNCTIONS), INVESTIGATED IN VARIOUS ASPECTS. THREE COURSES
EXAMINE SOME OF THE MOST IMPORTANT RECENT IDEAS IN THE POSITIVE
CHARACTERISTIC THEORY DISCOVERED BY GOSS (A FIELD IN TUMULTUOUS
DEVELOPMENT, WHICH IS SEEING A NUMBER OF SPECTACULAR ADVANCES): THEY
COVER RESPECTIVELY CRYSTALS OVER FUNCTION FIELDS (WITH A NUMBER OF
APPLICATIONS TO L-FUNCTIONS OF T-MOTIVES), GAMMA AND ZETA FUNCTIONS IN
CHARACTERISTIC P, AND THE BINOMIAL THEOREM. THE OTHER TWO ARE FOCUSED ON
TOPICS CLOSER TO THE CLASSICAL THEORY OF ABELIAN VARIETIES OVER NUMBER
FIELDS: THEY GIVE RESPECTIVELY A THOROUGH INTRODUCTION TO THE ARITHMETIC
OF JACOBIANS OVER FUNCTION FIELDS (INCLUDING THE CURRENT STATUS OF THE
BSD CONJECTURE AND ITS GEOMETRIC ANALOGUES, AND THE CONSTRUCTION OF
MORDELL–WEIL GROUPS OF HIGH RANK) AND A STATE OF THE ART SURVEY OF
GEOMETRIC IWASAWA THEORY EXPLAINING THE RECENT PROOFS OF VARIOUS
VERSIONS OF THE MAIN CONJECTURE, IN THE COMMUTATIVE AND NON-COMMUTATIVE
SETTINGS
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT. |
any_adam_object | 1 |
author_GND | (DE-588)1052651798 |
building | Verbundindex |
bvnumber | BV042216433 |
classification_tum | MAT 000 MAT 144f MAT 122f |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)899614413 (DE-599)DNB1060892642 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-0853-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV042216433</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150210</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">141201s2014 xx o|||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">14,O12</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1060892642</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034808521</subfield><subfield code="9">978-3-0348-0852-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034808538</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-0853-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-0853-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783034808538</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)899614413</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1060892642</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 144f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 122f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Arithmetic geometry over global function fields</subfield><subfield code="c">Gebhard Böckle ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Birkhäuser Springer</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced courses in mathematics - CRM Barcelona</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Arithmetische Geometrie</subfield><subfield code="0">(DE-588)4131383-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zetafunktion</subfield><subfield code="0">(DE-588)4190764-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraischer Funktionenkörper</subfield><subfield code="0">(DE-588)4141850-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">L-Funktion</subfield><subfield code="0">(DE-588)4137026-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Graduate</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">L-functions</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cohomology theory</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">t-motives</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Drinfeld modules</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Gamma functions</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Zeta and Multizeta functions</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic book text</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraischer Funktionenkörper</subfield><subfield code="0">(DE-588)4141850-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">L-Funktion</subfield><subfield code="0">(DE-588)4137026-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Zetafunktion</subfield><subfield code="0">(DE-588)4190764-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Arithmetische Geometrie</subfield><subfield code="0">(DE-588)4131383-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Böckle, Gebhard</subfield><subfield code="d">1964-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1052651798</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-0853-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027655028&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027655028&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027655028</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0853-8</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0853-8</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0853-8</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0853-8</subfield><subfield code="l">DE-384</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0853-8</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0853-8</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0853-8</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0853-8</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042216433 |
illustrated | Not Illustrated |
indexdate | 2025-03-03T13:02:22Z |
institution | BVB |
isbn | 9783034808521 9783034808538 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027655028 |
oclc_num | 899614413 |
open_access_boolean | |
owner | DE-703 DE-91 DE-BY-TUM DE-739 DE-20 DE-19 DE-BY-UBM DE-634 DE-861 DE-384 DE-83 |
owner_facet | DE-703 DE-91 DE-BY-TUM DE-739 DE-20 DE-19 DE-BY-UBM DE-634 DE-861 DE-384 DE-83 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Birkhäuser Springer |
record_format | marc |
series2 | Advanced courses in mathematics - CRM Barcelona |
spelling | Arithmetic geometry over global function fields Gebhard Böckle ... Basel [u.a.] Birkhäuser Springer 2014 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Advanced courses in mathematics - CRM Barcelona Arithmetische Geometrie (DE-588)4131383-5 gnd rswk-swf Zetafunktion (DE-588)4190764-4 gnd rswk-swf Algebraischer Funktionenkörper (DE-588)4141850-5 gnd rswk-swf L-Funktion (DE-588)4137026-0 gnd rswk-swf Graduate L-functions cohomology theory t-motives Drinfeld modules Gamma functions Zeta and Multizeta functions Electronic book text (DE-588)4143413-4 Aufsatzsammlung gnd-content Algebraischer Funktionenkörper (DE-588)4141850-5 s L-Funktion (DE-588)4137026-0 s Zetafunktion (DE-588)4190764-4 s Arithmetische Geometrie (DE-588)4131383-5 s DE-604 Böckle, Gebhard 1964- Sonstige (DE-588)1052651798 oth https://doi.org/10.1007/978-3-0348-0853-8 Verlag Volltext Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027655028&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027655028&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Abstract |
spellingShingle | Arithmetic geometry over global function fields Arithmetische Geometrie (DE-588)4131383-5 gnd Zetafunktion (DE-588)4190764-4 gnd Algebraischer Funktionenkörper (DE-588)4141850-5 gnd L-Funktion (DE-588)4137026-0 gnd |
subject_GND | (DE-588)4131383-5 (DE-588)4190764-4 (DE-588)4141850-5 (DE-588)4137026-0 (DE-588)4143413-4 |
title | Arithmetic geometry over global function fields |
title_auth | Arithmetic geometry over global function fields |
title_exact_search | Arithmetic geometry over global function fields |
title_full | Arithmetic geometry over global function fields Gebhard Böckle ... |
title_fullStr | Arithmetic geometry over global function fields Gebhard Böckle ... |
title_full_unstemmed | Arithmetic geometry over global function fields Gebhard Böckle ... |
title_short | Arithmetic geometry over global function fields |
title_sort | arithmetic geometry over global function fields |
topic | Arithmetische Geometrie (DE-588)4131383-5 gnd Zetafunktion (DE-588)4190764-4 gnd Algebraischer Funktionenkörper (DE-588)4141850-5 gnd L-Funktion (DE-588)4137026-0 gnd |
topic_facet | Arithmetische Geometrie Zetafunktion Algebraischer Funktionenkörper L-Funktion Aufsatzsammlung |
url | https://doi.org/10.1007/978-3-0348-0853-8 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027655028&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027655028&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bocklegebhard arithmeticgeometryoverglobalfunctionfields |