Pro Apache Hadoop: [analyze large volumes of data in amazingly short wall-clock intervals]
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Apress
2014
|
Ausgabe: | 2. ed. |
Schriftenreihe: | The expert's voice in big data
Books for professionals by professionals |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes index |
Beschreibung: | XXVI, 413 S. Ill. |
ISBN: | 9781430248637 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042197590 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 141119s2014 a||| |||| 00||| eng d | ||
020 | |a 9781430248637 |c Print |9 978-1-4302-4863-7 | ||
035 | |a (OCoLC)915510121 | ||
035 | |a (DE-599)BVBBV042197590 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-11 | ||
084 | |a ST 201 |0 (DE-625)143612: |2 rvk | ||
100 | 1 | |a Wadkar, Sameer |e Verfasser |0 (DE-588)1059371499 |4 aut | |
245 | 1 | 0 | |a Pro Apache Hadoop |b [analyze large volumes of data in amazingly short wall-clock intervals] |c Sameer Wadkar ; Madhu Siddalingaiah |
250 | |a 2. ed. | ||
264 | 1 | |a New York, NY |b Apress |c 2014 | |
300 | |a XXVI, 413 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a The expert's voice in big data | |
490 | 0 | |a Books for professionals by professionals | |
500 | |a Includes index | ||
630 | 0 | 4 | |a Apache Hadoop |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Electronic data processing / Distributed processing | |
650 | 4 | |a Open source software | |
650 | 4 | |a Big data | |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hadoop |0 (DE-588)1022420135 |2 gnd |9 rswk-swf |
653 | |a Electronic books | ||
689 | 0 | 0 | |a Hadoop |0 (DE-588)1022420135 |D s |
689 | 0 | 1 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Siddalingaiah, Madhu |d 1965- |e Verfasser |0 (DE-588)121303411 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4302-4864-4 |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027636544&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-027636544 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152712636399616 |
---|---|
adam_text | Titel: Pro Apache Hadoop
Autor: Wadkar, Sameer
Jahr: 2014
Contents
_J
About the Authors..............................................................................................................xix
About the Technical Reviewer...........................................................................................xxi
Acknowledgments...........................................................................................................xxiii
Introduction......................................................................................................................xxv
?Chapter 1: Motivation for Big Data....................................................................................1
What Is Big Data?..........................................................................................................................1
Key Idea Behind Big Data Techniques...........................................................................................2
Data Is Distributed Across Several Nodes.............................................................................................................2
Applications Are Moved to the Data.......................................................................................................................3
Data Is Processed Local to a Node........................................................................................................................3
Sequential Reads Preferred Over Random Reads.................................................................................................3
An Example............................................................................................................................................................4
Big Data Programming Models.....................................................................................................4
Massively Parallel Processing (MPP) Database Systems......................................................................................4
In-Memory Database Systems..............................................................................................................................5
MapReduce Systems.............................................................................................................................................5
Bulk Synchronous Parallel (BSP) Systems............................................................................................................6
Big Data and Transactional Systems.............................................................................................7
How Much Can We Scale?.............................................................................................................8
A Compute-Intensive Example...............................................................................................................................8
Amdhal s Law........................................................................................................................................................9
Business Use-Cases for Big Data..................................................................................................9
Summary.....................................................................................................................................10
vii
CONTENTS
ESChapter 2: Hadoop Concepts...........................................................................................11
Introducing Hadoop.....................................................................................................................11
Introducing the MapReduce Model.............................................................................................12
Components of Hadoop...............................................................................................................16
Hadoop Distributed File System (HDFS)..............................................................................................................17
Secondary NameNode.........................................................................................................................................22
TaskTracker.........................................................................................................................................................23
JobTracker...........................................................................................................................................................23
Hadoop 2.0..................................................................................................................................24
Components of YARN...........................................................................................................................................26
HDFS High Availability................................................................................................................29
Summary.....................................................................................................................................30
^Chapter 3: Getting Started with the Hadoop Framework.................................................31
Types of Installation....................................................................................................................31
Stand-Alone Mode...............................................................................................................................................31
Pseudo-Distributed Cluster..................................................................................................................................32
Multinode Node Cluster Installation.....................................................................................................................32
Preinstalled Using Amazon Elastic MapReduce..................................................................................................32
Setting up a Development Environment with a Cloudera Virtual Machine..................................33
Components of a MapReduce program.......................................................................................34
Your First Hadoop Program.........................................................................................................34
Prerequisites to Run Programs in Local Mode....................................................................................................35
WordCount Using the Old API...............................................................................................................................36
Building the Application.......................................................................................................................................38
Running WordCount in Cluster Mode...................................................................................................................39
WordCount Using the New API.............................................................................................................................39
Building the Application.......................................................................................................................................41
Running WordCount in Cluster Mode...................................................................................................................41
Third-Party Libraries in Hadoop Jobs..........................................................................................41
Summary.....................................................................................................................................46
viìi
CJ CONTENTS
^Chapter 4: Hadoop Administration..................................................................................47
Hadoop Configuration Files.........................................................................................................47
Configuring Hadoop Daemons.....................................................................................................48
Precedence of Hadoop Configuration Files.................................................................................49
Diving into Hadoop Configuration Files.......................................................................................49
core-site.xml........................................................................................................................................................50
hdfs-*.xml............................................................................................................................................................51
mapred-site.xml..................................................................................................................................................52
yarn-site.xml........................................................................................................................................................54
Memory Allocations in YARN................................................................................................................................55
Scheduler....................................................................................................................................56
Capacity Scheduler..............................................................................................................................................57
Fair Scheduler.....................................................................................................................................................59
Fair Scheduler Configuration...............................................................................................................................60
yarn-site.xml Configurations...............................................................................................................................61
Allocation File Format and Configurations...........................................................................................................62
Determine Dominant Resource Share in drf Policy.............................................................................................63
Slaves File...................................................................................................................................64
Rack Awareness..........................................................................................................................64
Providing Hadoop with Network Topology...........................................................................................................64
Cluster Administration Utilities....................................................................................................65
Check the HDFS..................................................................................................................................................66
Command-Line HDFS Administration..................................................................................................................68
Rebalancing HDFS Data.......................................................................................................................................70
Copying Large Amounts of Data from the HDFS..................................................................................................71
Summary.....................................................................................................................................72
?Chapter 5: Basics of MapReduce Development...............................................................73
Hadoop and Data Processing......................................................................................................73
Reviewing the Airline Dataset....................................................................................................73
Preparing the Development Environment............................................................................................................75
Preparing the Hadoop System.............................................................................................................................75
ix
CONTENTS
MapReduce Programming Patterns............................................................................................76
Map-Only Jobs (SELECT and WHERE Queries).....................................................................................................76
Problem Definition: SELECT Clause.....................................................................................................................76
Problem Definition: WHERE Clause......................................................................................................................84
Map and Reduce Jobs (Aggregation Queries).....................................................................................................87
Problem Definition: GROUP BY and SUM Clauses................................................................................................88
Improving Aggregation Performance Using the Combiner..................................................................................94
Problem Definition: Optimized Aggregators.........................................................................................................95
Role of the Partitioner........................................................................................................................................100
Problem Definition: Split Airline Data by Month.................................................................................................100
Bringing it All Together..............................................................................................................103
Summary...................................................................................................................................106
?Chapter 6: Advanced MapReduce Development............................................................107
MapReduce Programming Patterns..........................................................................................107
Introduction to Hadoop I/O.................................................................................................................................107
Problem Definition: Sorting...............................................................................................................................109
Problem Definition: Analyzing Consecutive Records.........................................................................................124
Problem Definition: Join Using MapReduce......................................................................................................134
Problem Definition: Join Using Map-Only jobs.................................................................................................140
Writing to Multiple Output Files in a Single MR Job.........................................................................................145
Collecting Statistics Using Counters..................................................................................................................147
Summary...................................................................................................................................150
?Chapter 7: Hadoop Input/Output....................................................................................151
Compression Schemes..............................................................................................................151
What Can Be Compressed?...............................................................................................................................152
Compression Schemes......................................................................................................................................152
Enabling Compression.......................................................................................................................................153
Inside the Hadoop I/O processes...............................................................................................154
InputFormat.......................................................................................................................................................155
OutputFormat.....................................................................................................................................................156
Custom OutputFormat: Conversion from Text to XML........................................................................................157
X
r CONTENTS
Custom InputFormat: Consuming a Custom XML file........................................................................................161
Hadoop Files..............................................................................................................................170
SequenceFile.....................................................................................................................................................171
MapFiles............................................................................................................................................................176
Avrò Files...........................................................................................................................................................177
Summary...................................................................................................................................183
^Chapter 8: Testing Hadoop Programs............................................................................185
Revisiting the Word Counter......................................................................................................185
Introducing MRUnit....................................................................................................................187
Installing MRUnit...............................................................................................................................................187
MRUnit Core Classes.........................................................................................................................................187
Writing an MRUnit Test Case.............................................................................................................................188
Testing Counters................................................................................................................................................190
Features of MRUnit............................................................................................................................................193
Limitations of MRUnit........................................................................................................................................194
Testing with LocalJobRunner....................................................................................................194
Limitations of LocalJobRunner..........................................................................................................................197
Testing with MiniMRCIuster.......................................................................................................197
Setting up the Development Environment.........................................................................................................197
Example for MiniMRCIuster...............................................................................................................................199
Limitations of MiniMRCIuster............................................................................................................................201
Testing MR Jobs with Access Network Resources....................................................................201
Summary...................................................................................................................................202
OChapter 9: Monitoring Hadoop.......................................................................................203
Writing Log Messages in Hadoop MapReduce Jobs.................................................................203
Viewing Log Messages in Hadoop MapReduce Jobs................................................................206
User Log Management in Hadoop 2.x.......................................................................................209
Log Storage In Hadoop 2.x.................................................................................................................................209
Log Management Improvements.......................................................................................................................211
Viewing Logs Using Web-Based Ul...................................................................................................................211
xi
CONTENTS
Command-Line Interface...................................................................................................................................211
Log Retention....................................................................................................................................................212
Hadoop Cluster Performance Monitoring..................................................................................212
Using YARN REST APIs...............................................................................................................213
Managing the Hadoop Cluster Using Vendor Tools....................................................................213
Ambari Architecture...........................................................................................................................................214
Summary...................................................................................................................................215
üChapter 10: Data Warehousing Using Hadoop...............................................................217
Apache Hive..............................................................................................................................217
Installing Hive...................................................................................................................................................218
Hive Architecture...............................................................................................................................................218
Metastore..........................................................................................................................................................219
Compiler Basics.................................................................................................................................................219
Hive Concepts....................................................................................................................................................219
HiveQL Compiler Details....................................................................................................................................223
Data Definition Language.................................................................................................................................227
Data Manipulation Language............................................................................................................................228
External Interfaces............................................................................................................................................229
Hive Scripts.......................................................................................................................................................231
Performance......................................................................................................................................................232
MapReduce Integration.....................................................................................................................................232
Creating Partitions.............................................................................................................................................233
User-Defined Functions.....................................................................................................................................234
Impala.......................................................................................................................................236
Impala Architecture...........................................................................................................................................237
impala Features.................................................................................................................................................237
Impala Limitations.............................................................................................................................................237
Shark.........................................................................................................................................238
Shark/Spark Architecture..................................................................................................................................238
Summary...................................................................................................................................239
xii
CONTENTS
?Chapter 11: Data Processing Using Pig.........................................................................241
An Introduction to Pig................................................................................................................241
Running Pig...............................................................................................................................243
Executing in the Grunt Shell..............................................................................................................................244
Executing a Pig Script........................................................................................................................................244
Embedded Java Program...................................................................................................................................245
Pig Latin....................................................................................................................................246
Comments in a Pig Script..................................................................................................................................246
Execution of Pig Statements..............................................................................................................................247
Pig Commands...................................................................................................................................................247
User-Defined Functions............................................................................................................252
Eval Functions Invoked in the Mapper...............................................................................................................253
Eval Functions Invoked in the Reducer..............................................................................................................253
Writing and Using a Custom FilterFunc.............................................................................................................260
Comparison of PIG versus Hive................................................................................................262
Crunch API.................................................................................................................................263
How Crunch Differs from Pig............................................................................................................................263
Sample Crunch Pipeline....................................................................................................................................264
Summary...................................................................................................................................269
^Chapter 12: HCatalog and Hadoop in the Enterprise.....................................................271
HCatalog and Enterprise Data Warehouse Users.......................................................................271
HCatalog: A Brief Technical Background...................................................................................272
HCatalog Command-Line Interface....................................................................................................................274
WebHCat............................................................................................................................................................274
HCatalog Interface for MapReduce....................................................................................................................275
HCatalog Interface for Pig..................................................................................................................................278
HCatalog Notification Interface..........................................................................................................................279
Security and Authorization in HCatalog.....................................................................................279
Bringing It All Together..............................................................................................................280
Summary...................................................................................................................................281
xiii
CONTENTS
SChapter 13: Log Analysis Using Hadoop........................................................................283
Log File Analysis Applications...................................................................................................283
Web Analytics....................................................................................................................................................283
Security Compliance and Forensics..................................................................................................................284
Monitoring and Alerts........................................................................................................................................284
Internet of Things...............................................................................................................................................285
Analysis Steps...........................................................................................................................286
Load...................................................................................................................................................................286
Refine................................................................................................................................................................286
Visualize............................................................................................................................................................287
Apache Flume............................................................................................................................287
Core Concepts..................................................................................................................................................288
Netflix Suro................................................................................................................................290
Cloud Solutions.........................................................................................................................291
Summary...................................................................................................................................291
OChapter 14: Building Real-Time Systems Using HBase.................................................293
What Is HBase?.........................................................................................................................293
Typical HBase Use-Case Scenarios...........................................................................................294
HBase Data Model.....................................................................................................................295
HBase Logical or Client-Side View.....................................................................................................................295
Differences Between HBase and RDBMSs........................................................................................................296
HBase Tables.....................................................................................................................................................297
HBase Cells........................................................................................................................................................297
HBase Column Family........................................................................................................................................297
HBase Commands and APIs......................................................................................................298
Getting a Command List: help Command..........................................................................................................299
Creating a Table: create Command....................................................................................................................300
Adding Rows to a Table: put Command.............................................................................................................300
Retrieving Rows from the Table: get Command.................................................................................................300
Reading Multiple Rows: scan Command...........................................................................................................300
xiv
: : CONTENTS
Counting the Rows in the Table: count Command...............
Deleting Rows: delete Command.........................................
Truncating a Table: truncate Command...............................
Dropping a Table: drop Command........................................
Altering a Table: alter Command..........................................
HBase Architecture....................................................
HBase Components.............................................................
Compaction and Splits in HBase..........................................
Compaction..........................................................................
HBase Configuration: An Overview............................
hbase-default.xml and hbase-site.xml................................
HBase Application Design........................................
Tall vs. Wide vs. Narrow Table Design.................................
Row Key Design...................................................................
HBase Operations Using Java API.............................
HBase Treats Everything as Bytes.......................................
Create an HBase Table...............................................................
Administrative Functions Using HBaseAdmin............................
Accessing Data Using the Java API...........................................
HBase MapReduce Integration.......................................
A MapReduce Job to Read an HBase Table....................
HBase and MapReduce Clusters....................................
Scenario I: Frequent MapReduce Jobs Against HBase Tables...
Scenario II: HBase and MapReduce have Independent SLAs....
Summary.......................................................................
?Chapter 15: Data Science with Hadoop...................
Hadoop Data Science Methods......................................
Apache Hama................................................................
Bulk Synchronous Parallel Model..............................................
Hama Hello World!.....................................................................
...301
,..301
.....301
.....302
.....302
...................302
........................303
........................309
........................310
...................311
..............311
...........312
..............312
..............313
..........314
..............314
..............315
..............315
.............316
...320
...320
...323
.....323
.....323
...323
...325
..325
..326
....326
....327
XV
CONTENTS
Monte Carlo Methods........................................................................................................................................329
K-Means Clustering...........................................................................................................................................333
Apache Spark............................................................................................................................336
Resilient Distributed Datasets (RDDs)...............................................................................................................336
Monte Carlo with Spark.....................................................................................................................................337
KMeans with Spark...........................................................................................................................................339
RHadoop....................................................................................................................................341
Summary...................................................................................................................................342
?Chapter 16: Hadoop in the Cloud...................................................................................343
Economics.................................................................................................................................343
Self-Hosted Cluster............................................................................................................................................343
Cloud-Hosted Cluster.........................................................................................................................................344
Elasticity............................................................................................................................................................344
On Demand........................................................................................................................................................344
Bid Pricing.........................................................................................................................................................345
Hybrid Cloud......................................................................................................................................................345
Logistics....................................................................................................................................345
Ingress/Egress...................................................................................................................................................345
Data Retention...................................................................................................................................................345
Security.....................................................................................................................................346
Cloud Usage Models..................................................................................................................346
Cloud Providers.........................................................................................................................347
Amazon Web Services.......................................................................................................................................347
Google Cloud Platform.......................................................................................................................................349
Microsoft Azure..................................................................................................................................................350
Choosing a Cloud Vendor...................................................................................................................................350
Case Study: Amazon Web Services...........................................................................................351
Elastic MapReduce............................................................................................................................................351
Elastic Compute Cloud.......................................................................................................................................354
Summary...................................................................................................................................356
xvi
CONTENTS
?Chapter 17: Building a YARN Application......................................................................357
YARN: A General-Purpose Distributed System...........................................................................357
YARN: A Quick Review...............................................................................................................359
Creating a YARN Application......................................................................................................361
POM Configuration.............................................................................................................................................362
DownloadService.java Class......................................................................................................362
Client.java..................................................................................................................................365
Steps to Launch the Application Master from the Client...................................................................................365
ApplicationMaster.java..............................................................................................................373
Communication Protocol between Application Master and Resource Manager:
Application Master Protocol..............................................................................................................................373
Node Manager Communication Protocol: Container Management Protocol......................................................373
Steps to Launch the Worker Tasks.....................................................................................................................373
Executing the Application Master..............................................................................................378
Launch the Application in Un-Managed Mode...................................................................................................379
Launch the Application in Managed Mode.........................................................................................................379
Summary...................................................................................................................................379
ElAppendix A: Installing Hadoop.....................................................................................381
Installing Hadoop 2.2.0 on Windows........................................................................................381
Preparing the Installation Environment.............................................................................................................381
Building Hadoop 2.2.0 for Windows...................................................................................................................383
Installing Hadoop 2.2.0 for Windows.................................................................................................................383
Configuring Hadoop 2.2.0..................................................................................................................................383
Preparing the Hadoop Cluster............................................................................................................................386
Starting HDFS...................................................................................................................................................387
Starting MapReduce (YARN)..............................................................................................................................387
Verifying that the Cluster Is Running.................................................................................................................387
Testing the Cluster.............................................................................................................................................387
Installing Hadoop 2.2.0 on Linux...............................................................................................388
xvii
CONTENTS
^Appendix B: Using Maven with Eclipse.........................................................................391
A Quick Introduction to Maven.................................................................................................391
Creating a Maven Project..................................................................................................................................391
Using Maven with Eclipse........................................................................................................393
Installing the m2e Maven Eclipse Plug-in.........................................................................................................393
Creating a Maven Project from Eclipse..............................................................................................................393
Building a Maven Project from Eclipse..............................................................................................................396
^Appendix C: Apache Ambari..........................................................................................399
Hadoop Components Supported by Apache Ambari..................................................................399
Installing Apache Ambari...........................................................................................................401
Trying the Ambari Sandbox on Your OS.....................................................................................401
Index.................................................................................................................................403
xviii
|
any_adam_object | 1 |
author | Wadkar, Sameer Siddalingaiah, Madhu 1965- |
author_GND | (DE-588)1059371499 (DE-588)121303411 |
author_facet | Wadkar, Sameer Siddalingaiah, Madhu 1965- |
author_role | aut aut |
author_sort | Wadkar, Sameer |
author_variant | s w sw m s ms |
building | Verbundindex |
bvnumber | BV042197590 |
classification_rvk | ST 201 |
ctrlnum | (OCoLC)915510121 (DE-599)BVBBV042197590 |
discipline | Informatik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01960nam a2200493 c 4500</leader><controlfield tag="001">BV042197590</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">141119s2014 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781430248637</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4302-4863-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)915510121</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042197590</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 201</subfield><subfield code="0">(DE-625)143612:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wadkar, Sameer</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1059371499</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pro Apache Hadoop</subfield><subfield code="b">[analyze large volumes of data in amazingly short wall-clock intervals]</subfield><subfield code="c">Sameer Wadkar ; Madhu Siddalingaiah</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Apress</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVI, 413 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The expert's voice in big data</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Books for professionals by professionals</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">Apache Hadoop</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing / Distributed processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Open source software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hadoop</subfield><subfield code="0">(DE-588)1022420135</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hadoop</subfield><subfield code="0">(DE-588)1022420135</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Siddalingaiah, Madhu</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121303411</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4302-4864-4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027636544&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027636544</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042197590 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:15:04Z |
institution | BVB |
isbn | 9781430248637 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027636544 |
oclc_num | 915510121 |
open_access_boolean | |
owner | DE-11 |
owner_facet | DE-11 |
physical | XXVI, 413 S. Ill. |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Apress |
record_format | marc |
series2 | The expert's voice in big data Books for professionals by professionals |
spelling | Wadkar, Sameer Verfasser (DE-588)1059371499 aut Pro Apache Hadoop [analyze large volumes of data in amazingly short wall-clock intervals] Sameer Wadkar ; Madhu Siddalingaiah 2. ed. New York, NY Apress 2014 XXVI, 413 S. Ill. txt rdacontent n rdamedia nc rdacarrier The expert's voice in big data Books for professionals by professionals Includes index Apache Hadoop Datenverarbeitung Electronic data processing / Distributed processing Open source software Big data Data Mining (DE-588)4428654-5 gnd rswk-swf Hadoop (DE-588)1022420135 gnd rswk-swf Electronic books Hadoop (DE-588)1022420135 s Data Mining (DE-588)4428654-5 s 1\p DE-604 Siddalingaiah, Madhu 1965- Verfasser (DE-588)121303411 aut Erscheint auch als Online-Ausgabe 978-1-4302-4864-4 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027636544&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Wadkar, Sameer Siddalingaiah, Madhu 1965- Pro Apache Hadoop [analyze large volumes of data in amazingly short wall-clock intervals] Apache Hadoop Datenverarbeitung Electronic data processing / Distributed processing Open source software Big data Data Mining (DE-588)4428654-5 gnd Hadoop (DE-588)1022420135 gnd |
subject_GND | (DE-588)4428654-5 (DE-588)1022420135 |
title | Pro Apache Hadoop [analyze large volumes of data in amazingly short wall-clock intervals] |
title_auth | Pro Apache Hadoop [analyze large volumes of data in amazingly short wall-clock intervals] |
title_exact_search | Pro Apache Hadoop [analyze large volumes of data in amazingly short wall-clock intervals] |
title_full | Pro Apache Hadoop [analyze large volumes of data in amazingly short wall-clock intervals] Sameer Wadkar ; Madhu Siddalingaiah |
title_fullStr | Pro Apache Hadoop [analyze large volumes of data in amazingly short wall-clock intervals] Sameer Wadkar ; Madhu Siddalingaiah |
title_full_unstemmed | Pro Apache Hadoop [analyze large volumes of data in amazingly short wall-clock intervals] Sameer Wadkar ; Madhu Siddalingaiah |
title_short | Pro Apache Hadoop |
title_sort | pro apache hadoop analyze large volumes of data in amazingly short wall clock intervals |
title_sub | [analyze large volumes of data in amazingly short wall-clock intervals] |
topic | Apache Hadoop Datenverarbeitung Electronic data processing / Distributed processing Open source software Big data Data Mining (DE-588)4428654-5 gnd Hadoop (DE-588)1022420135 gnd |
topic_facet | Apache Hadoop Datenverarbeitung Electronic data processing / Distributed processing Open source software Big data Data Mining Hadoop |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027636544&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wadkarsameer proapachehadoopanalyzelargevolumesofdatainamazinglyshortwallclockintervals AT siddalingaiahmadhu proapachehadoopanalyzelargevolumesofdatainamazinglyshortwallclockintervals |