Multi-agent machine learning: a reinforcement approach

"Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Schwartz, Howard M. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Hoboken, New Jersey Wiley 2014
Schlagworte:
Online-Zugang:Cover image
Inhaltsverzeichnis
Zusammenfassung:"Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory and robotics. Framework for understanding a variety of methods and approaches in multi-agent machine learning. Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering"..
Beschreibung:xi, 242 Seiten Diagramme
ISBN:9781118362082

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Inhaltsverzeichnis