Introduction to noncommutative algebra:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham [u.a.]
Springer
2014
|
Schriftenreihe: | Universitext
|
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XXXVII, 199 S. 24 cm |
ISBN: | 3319086928 9783319086927 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042176198 | ||
003 | DE-604 | ||
005 | 20141201 | ||
007 | t | ||
008 | 141110s2014 |||| 00||| eng d | ||
020 | |a 3319086928 |9 3-319-08692-8 | ||
020 | |a 9783319086927 |9 978-3-319-08692-7 | ||
035 | |a (OCoLC)897060622 | ||
035 | |a (DE-599)BVBBV042176198 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-11 |a DE-29T |a DE-20 |a DE-188 |a DE-83 | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a 16-01 |2 msc | ||
100 | 1 | |a Brešar, Matej |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to noncommutative algebra |c Matej Brešar |
264 | 1 | |a Cham [u.a.] |b Springer |c 2014 | |
300 | |a XXXVII, 199 S. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Universitext | |
500 | |a Includes bibliographical references and index | ||
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-319-08693-4 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027615535&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027615535&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-027615535 |
Datensatz im Suchindex
_version_ | 1804152683282563072 |
---|---|
adam_text | Contents
Finite Dimensional Division Algebras
...................... 1
1.1
After the Complex Numbers: What Comes Next?
.......... 1
1.2
Beyond Frobenius Theorem
......................... 4
1.3
Simple Rings
.................................... 6
1.4
Central Algebras
................................. 9
1.5
Multiplication Algebra
............................. 11
1.6
Automorphisms of Central Simple Algebras
.............. 13
1.7
Maximal Subfields
................................ 15
1.8
Wedderburn s Theorem on Finite Division Rings
........... 16
1.9
Further Examples of Division Algebras
................. 18
Exercises
........................................... 21
Structure of Finite Dimensional Algebras
................... 25
2.1 Nilpotent
Ideals
.................................. 25
2.2
Prime and
Semiprime
Rings
......................... 28
2.3
Unitization
..................................... 31
2.4
The Regular Representation
.......................... 32
2.5
Group Algebras
.................................. 35
2.6
Matrix Units
.................................... 37
2.7
Idempotents
..................................... 39
2.8
Minimal Left Ideals
............................... 41
2.9
Wedderburn s Structure Theorems
..................... 42
2.10
Algebras Over Special Fields
........................ 45
2.11
Scalar Extension (A Naive Approach)
.................. 47
Exercises
........................................... 49
Modules and Vector Spaces
............................. 53
3.1
Concept of a Module
.............................. 53
3.2
Basic Module-Theoretic Notions
...................... 56
3.3
Vector Spaces Over Division Rings
.................... 59
3.4
Endomorphisms and Matrices
........................ 61
Contents
3.5 Simple Modules.................................. W
3.6 Maximal
Left
Ideals............................... 65
3.7 Schur s Lemma.................................. 67
3.8 Semisimple Modules.............................. 68
3.9
Wedderburn s Structure Theory Revisited
................ 69
ЗЛО
Chain
Conditions
................................. 72
■ * ·
f
*s
Exercises
...........................................
79
Tensor
Products
......................................
79
4.1
Concept
of a Tensor Product
.........................
4.2
Basic
Properties of Tensor Products
....................
4.3
Linear (In)dependence in Tensor Products
...............
84
4.4
Tensor Product of Algebras
..........................
4.5
Multiplication Algebra and Tensor Products
..............
9l
4.6
Centralizers in Tensor Products
.......................
l¿
4.7
Scalar Extension (The Right Approach)
...............
94
4.8
Simplicity of Tensor Products
........................
4.9
The Skolem-Noether Theorem
........................
lb
99
4.10
The Double Centralizer Theorem
......................
4.11
The
Brauer
Group
................................
101
Exercises
...........................................
Structure of Rings
....................................
l07
5.1
Primitive Rings
..................................
l07
5.2
The
Jacobson
Density Theorem
.......................
5.3
Alternative Versions and Applications
.................. *
5.4
Primitive Rings Having Minimal Left Ideals
.............. **
5.5
Primitive Ideals
..................................
119
5.6
Introducing the
Jacobson
Radical
......................
5.7
Quasi-invertibility
................................
5.8
Computing the
Jacobson
Radical
......................
12ţj
5.9
Semiprimitive
Rings
...............................
^
5.10
Structure Theory in Action
..........................
13°
Exercises
........................................... 13
Noncommutative
Polynomials
............................
6.1
Free Algebras
...................................
^
6.2
Algebras Defined by Generators and Relations
............
14i^
6.3
Alternating Polynomials
............................
14^
6.4
Polynomial Identities: Definition and Examples
............
l45
6.5
Linearization
....................................
^47
6.6
Stable Identities
..................................
ł49
6.7
T-ideals
........ . ............................
152
Contents xiii
6.8
The Characteristic Polynomial
........................ 153
6.9
The Amitsur-Levitzki Theorem
....................... 157
Exercises
........................................... 159
7
Rings of Quotients and Structure of Pi-Rings
................ 163
7.1
Rings of Central Quotients
.......................... 163
7.2
Classical Rings of Quotients
......................... 166
7.3
Ore Domains
.................................... 169
7.4
Martindale Rings of Quotients
........................ 171
7.5
The Extended Centroid
............................. 174
7.6
Linear (Independence in Prime Rings
.................. 177
7.7
Prime GPI-Rings
................................. 179
7.8
Primitive Pi-Rings
................................ 183
7.9
Prime Pi-Rings
.................................. 185
7.10
Central Polynomials
............................... 188
Exercises
........................................... 189
References
............................................ 193
Index
................................................ 195
Universitext
Matej Brešar
Introduction to
Noncommutative Algebra
Providing an elementary introduction to
noncommutative
rings and algebras, this
textbook begins with the classical theory of finite dimensional algebras. Only after
this, modules, vector spaces over division rings, and tensor products are introduced
and studied. This is followed by Jacobson s structure theory of rings. The final
chapters treat free algebras, polynomial identities, and rings of quotients.
Many of the results are not presented in their full generality. Rather, the emphasis
is on clarity of exposition and simplicity of the proofs, with several being different
from those in other texts on the subject. Prerequisites are kept to a minimum, and
new concepts are introduced gradually and are carefully motivated. Introduction to
Noncommutative
Algebra is therefore accessible to a wide mathematical audience. It
is, however, primarily intended for beginning graduate and advanced undergraduate
students encountering
noncommutative
algebra for the first time.
|
any_adam_object | 1 |
author | Brešar, Matej |
author_facet | Brešar, Matej |
author_role | aut |
author_sort | Brešar, Matej |
author_variant | m b mb |
building | Verbundindex |
bvnumber | BV042176198 |
classification_rvk | SK 230 |
ctrlnum | (OCoLC)897060622 (DE-599)BVBBV042176198 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01580nam a2200349 c 4500</leader><controlfield tag="001">BV042176198</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20141201 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">141110s2014 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3319086928</subfield><subfield code="9">3-319-08692-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319086927</subfield><subfield code="9">978-3-319-08692-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)897060622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042176198</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brešar, Matej</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to noncommutative algebra</subfield><subfield code="c">Matej Brešar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXVII, 199 S.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-319-08693-4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027615535&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027615535&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027615535</subfield></datafield></record></collection> |
id | DE-604.BV042176198 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:14:36Z |
institution | BVB |
isbn | 3319086928 9783319086927 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027615535 |
oclc_num | 897060622 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-11 DE-29T DE-20 DE-188 DE-83 |
owner_facet | DE-355 DE-BY-UBR DE-11 DE-29T DE-20 DE-188 DE-83 |
physical | XXXVII, 199 S. 24 cm |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Springer |
record_format | marc |
series2 | Universitext |
spelling | Brešar, Matej Verfasser aut Introduction to noncommutative algebra Matej Brešar Cham [u.a.] Springer 2014 XXXVII, 199 S. 24 cm txt rdacontent n rdamedia nc rdacarrier Universitext Includes bibliographical references and index Erscheint auch als Online-Ausgabe 978-3-319-08693-4 Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027615535&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027615535&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Brešar, Matej Introduction to noncommutative algebra |
title | Introduction to noncommutative algebra |
title_auth | Introduction to noncommutative algebra |
title_exact_search | Introduction to noncommutative algebra |
title_full | Introduction to noncommutative algebra Matej Brešar |
title_fullStr | Introduction to noncommutative algebra Matej Brešar |
title_full_unstemmed | Introduction to noncommutative algebra Matej Brešar |
title_short | Introduction to noncommutative algebra |
title_sort | introduction to noncommutative algebra |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027615535&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027615535&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bresarmatej introductiontononcommutativealgebra |