Bio-nanoimaging: protein misfolding & aggregation
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier, Academic Press
2014
|
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 526 S. Ill., graph. Darst. |
ISBN: | 9780123944313 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042142322 | ||
003 | DE-604 | ||
005 | 20151002 | ||
007 | t | ||
008 | 141023s2014 ad|| |||| 00||| eng d | ||
020 | |a 9780123944313 |9 978-0-12-394431-3 | ||
035 | |a (OCoLC)915482587 | ||
035 | |a (DE-599)BVBBV042142322 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-29T | ||
084 | |a WD 5100 |0 (DE-625)148194: |2 rvk | ||
245 | 1 | 0 | |a Bio-nanoimaging |b protein misfolding & aggregation |c ed. by Vladimir N.Uversky , Yuri L. Lyubchenko |
264 | 1 | |a Amsterdam [u.a.] |b Elsevier, Academic Press |c 2014 | |
300 | |a XIX, 526 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
700 | 1 | |a Uverskij, Vladimir N. |0 (DE-588)13389651X |4 edt | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027582278&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-027582278 |
Datensatz im Suchindex
_version_ | 1804152628113833984 |
---|---|
adam_text | Titel: Bio-nanoimaging
Autor: Uverskij, Vladimir N
Jahr: 2014
Contents
Contributors xv
1. Molecular Mechanisms of Protein
Misfolding
Leonid Breydo and Vladimir N. Uversky
Introduction 1
The Mechanism of Aggregation 1
Structures of Protein Aggregates 3
Protein Aggregation Pathways 5
Amyloid Beta, Aß 5
a-Synuclein 6
Yeast and Fungal Prions 7
Mammalian Prions 7
Insulin 8
Functional Amyloids 9
ß-2 Microglobulin 10
Other Amyloidogenic Proteins 10
Conclusions 10
References 10
Part I
Nanoimaging and Nanotechnology
of Aggregating Proteins:
A. In Vitro Approaches
2. Amyloid Fibril Length Quantification
by Atomic Force Microscopy
Wei-Feng Xue
Background 17
Acquiring Images for Length
Quantification 17
Single-Particle Measurements of Individual
Fibril Length 19
Distributions of Fibril Length 20
Prospects for Fibril Length Distribution
Analysis 22
Acknowledgments 24
References 25
3. Imaging Nucleation, Growth and
Heterogeneity in Self-Assembled
Amyloid Phases
Neil R. Anthony, Keith M. Berland, Anil K. Mehta,
David G. Lynn and W. Seth Childers
Introduction 27
Diversity in Cross-ß Assemblies 28
Particle Phases 29
Paracrystallization 31
Paracrystalline Polymorphism 33
Functional Energy Transfer 33
Closing Perspective 34
Acknowledgments 35
References 35
4. Molecular-Level Insights into Amyloid
Polymorphism from Solid-State
Nuclear Magnetic Resonance
Robert Tycko
Introduction 37
Self-Propagating Molecular-Level
Polymorphism in Aß^o Fibrils 38
Competition between Parallel and Antiparallel
ß-Sheets in D23N-Aß1.40 Fibrils 39
pH-Dependent Cross-ß Motif in Aß^s Fibrils 41
Polymorphism in Prion Fibrils 41
Future Directions 45
Acknowledgments 45
References 45
5. Single-Molecule Imaging of
Amyloid-ß Protein (Aß) of
Alzheimer s Disease: From
Single-Molecule Structures to
Aggregation Mechanisms and
Membrane Interactions
Marie-Isabel Aguilar, Xu Hou, Dusan Losic,
Adam I. Mechler, Lisandra L. Martin and
David H. Small
v
vi
Contents
Introduction 47
Principles of High-Resolution Imaging by
STM and AFM 48
Monomeric and Oligomeric Structures of
Aß Determined by STM and AFM 48
Mechanism of Aß Fibrillogenesis Examined
by AFM 51
Aß Structure on Model Membranes Examined
by High-Resolution AFM 52
Models of Aß Structure Based on
High-Resolution Imaging 52
References 54
6. Nanomechanics of Neurotoxic
Proteins: Insights at the Start of the
Neurodegeneration Cascade
Rubén Hervás, María del Carmen Fernández-
Ramírez, Laura Esther Abelleira, Mariano
Carrión-Vázquez and Douglas V. Laurents
Introduction 57
Intrinsically Disordered Proteins: Central Roles
and Fatal Diseases 57
Amyloidogenic Neurodegenerative Diseases:
A Subset of Conformational Diseases 58
Single-Molecule Analysis of Neurotoxic Proteins 60
AFM-Based Single-Molecule Force
Spectroscopy: Principle and Modes 60
Single-Molecule Markers: The Carrier-Guest
Strategy 61
Testing the Amyloidogenic Behavior of Fusion
Proteins and the Integrity of the Carrier Protein 61
Conformational Polymorphism of Neurotoxic
Proteins 62
Application of SMFS to Test Putative
Therapeutic Agents 64
Molecular Dynamics Simulations of
Amyloidogenesis by Neurotoxic Proteins 64
Future Perspectives 65
Abbreviations 66
Acknowledgments 66
References 66
7. Reporters of Amyloid Structural
Polymorphism
Harry LeVine III, K. Peter, R. Nilsson and
Per Hammarström
Background and Rationale 69
Ligand-Binding Phenotype 69
Conformational/Configurational Antibodies 70
Ligand-Binding Sites 70
Probes that Report their Conformation and
Environment 71
Flydrophobic Probes and Molecular Rotors 71
Luminescent Conjugated Oligo- and
Polythiophenes 73
Assessing Pathology Spread and Quantification 75
Applications and Implications of
Polymorphism-Sensitive Reporters 77
Diagnostics 77
Therapeutics 77
References 77
8. Conformation-Dependent Antibodies
as Tools for Characterization
of Amyloid Protein Aggregates
Jessica W. Wu and Leonid Breydo
Introduction
Amyloid Fibrils and Oligomers have Defined,
Unique Tertiary Structures and Molecular
Polymorphisms that are Recognized by
Conformation-Specific Antibodies
Types of Conformation-Specific Antibodies
Against Protein Aggregates
Sequence-Specific Antibodies
Sequence-Independent Antibodies
Fibril-Specific Antibodies
Oligomer-Specific Antibodies
Conformation-Specific Antibodies as Probes
for Studying Protein Structure and Changes in
Conformation Underlying Protein Aggregation
Conformation-Specific Antibodies Recognize
Polymorphism within Amyloid Oligomers
and Fibrils 87
Conformation-Specific Antibodies as Probes
for Studying Protein-Folding Mechanisms 88
Therapeutic Applications of Conformation-Specific
Antibodies in Neurodegenerative Diseases 89
Active Immunotherapy 89
Passive Immunotherapy 90
Conclusions 90
References 91
Part II
Nanoimaging and Nanotechnology
of Aggregating Proteins:
B. In Vivo Approaches
9. Analyzing Alzheimer s Disease-
Related Protein Deposition In Vivo By
Multiphoton Laser Scanning Microscopy
81
82
84
85
86
86
86
87
Niki ta Rudinskiy and Tara L. Spires-Jones
Protein Aggregation in Alzheimer s Disease
97
Contents
vii
In Vivo Multiphoton Imaging
In Vivo Imaging of Amyloid Plaques and
Neurofibrillary Tangles and Associated
Neuroanatomic Pathology
Imaging Functional Changes Induced by
AD-Related Pathology
Limitations of In Vivo Multiphoton Imaging
Conclusions
References
98
99
101
101
102
102
10. Probing Amyloid Aggregation and
Morphology In Situ by Multiparameter
Imaging and Super-Resolution
Fluorescence Microscopy
Gabriele S. Kaminski Schierle, Markus Sauer
and Clemens F. Kaminski
Introduction 105
Multi-Parameter Microscopy of Protein
Aggregation Kinetics 106
Fusion Protein Labeling of Amyloidogenic
Proteins 106
Principle of Multi-Parameter Imaging Techniques 107
Fluorescence Anisotropy Imaging 107
Fluorescence Lifetime Imaging of Protein
Aggregation 108
Super-Resolution Imaging of Amyloid
Aggregation 111
Single-Molecule-Based Localization
Microscopy for Direct Visualization of
Amyloid Morphology 111
Fluorophores for Localization Microscopy 112
Realization of Direct Stochastic Optical
Reconstruction Microscopy Experiments 113
In Situ Imaging of Abeta 40 and Abeta
42 Self Assembly Reactions 113
Super-Resolution Imaging of Fluman Lysozyme 115
Conclusion 115
Acknowledgments 117
References 117
11. Imaging of Amyloid-ß Aggregation
Using a Novel Quantum dot Nanoprobe
and its Advanced Applications
Kiyotaka Tokuraku and Tsuneya Ikezu
Introduction of Amyloid-ß Peptide Biology
and Quantum dot Properties 121
Preparation of the Quantum dot Nanoprobe 122
In Vitro Imaging and Quantification of Aß
Aggregation 122
Imaging of Aß Behaviors in Live Cell Cultures 124
High-Throughput Microscreening of
Substances Inhibitory to Aß Aggregation 127
Current Problems and Future Possibilities
of this Imaging Technology 129
References 130
12. Studying the Molecular Determinants
of Protein Oligomerization in
Neurodegenerative Disorders
by Bimolecular Fluorescence
Complementation
Federico Herrera, Susana Gonçalves, Joana Branco
dos Santos and Tiago Fleming Outeiro
Introduction 133
Neurodegenerative Disorders and Protein
Misfolding 134
Protein Oligomerization, Aggregation
and Toxicity 134
Protein Complementation Assays: History
and Latest Developments 134
Advantages of BiFC Systems for Studying
Protein Interactions 136
Protein Complementation Assays for the
Study of Neurodegenerative Disorders 139
Methods 140
Design 140
Development 141
Troubleshooting 141
Acknowledgments 142
References 142
13. Structure-Specific Intrinsic
Fluorescence of Protein Amyloids
Used to Study their Kinetics
of Aggregation
Fiona T.S. Chan, Dorothea Pinotsi, Gabriele
S. Kaminski Schierle and Clemens F. Kaminski
Introduction
Characterization of Oligomers Using
Tryptophan and Tyrosine Fluorescence
Certain Protein Crystals and Aggregates Develop
Intrinsic Fluorescence in the Visible Range
Intrinsic Fluorescence Arising from Disease-
Related Protein Amyloids During Aggregation
Does the Intrinsic Fluorescence of Protein
Amyloids Provide Novel Insights into their
Remarkable Stability?
Intrinsic Amyloid Fluorescence Informs on
the Kinetics of Amyloid Formation and
Mechanisms of Protein Misfolding Diseases
Conclusions
Future Work
Acknowledgments
References
147
148
149
149
151
152
153
154
154
154
viii
Contents
14. Real-Time Monitoring of Inclusion
Formation in Living Zebrafish
Sophie Rothhämei, Katrin Strecker,
Christian Haass and Bettina Schmid
Introduction 157
Zebrafish as a Model Organism 158
Techniques for Generating Aggregation
Models in Zebrafish 158
Time-Lapse In Vivo Imaging Techniques 159
Modeling Inclusion Formation in an
HD Model in Zebrafish 162
In Vivo Imaging of Inclusion Formation in
Zebrafish 163
Concluding Remarks and Outlook 163
References 164
15. Scanning for Intensely Fluorescent
Targets (SIFT) in the Study of
Protein Aggregation at the
Single-Particle Level
Georg Nübling and Armin Giese
The Role of Protein Aggregation in
Neurodegeneration 167
Measuring Protein Aggregation:
From Fibril Formation to
Single-Particle Analysis 168
The SIFT Method: Introduction and Technical
Background 168
Methods of Analysis 168
Autocorrelation and Cross-Correlation
Analysis 168
Fluorescence Intensity Distribution Analysis
(FIDA) 169
SIFT and SIFT-2D Analysis 170
Förster Resonance Energy Transfer (FRET) 170
Practical Applications 170
Monitoring Protein Aggregation in the
Single-Color Mode 170
Advantages of Dual-Color Monitoring of
Protein Aggregation 171
High-Throughput Screening Assays 171
Protein Aggregation - Specificity and
Dynamics of Aggregation Processes 172
Interactions between Different Particle
Species 172
Monitoring Effects of Post-Translational
Modifications 174
Pitfalls and Common Misconceptions 174
Technical Issues and Protein Handling 174
Data Interpretation 175
References 176
Part III
Polymorphism of Protein Misfolding
and Aggregated Species
16. The Molecular Basis for TGFBIp-
Related Corneal Dystrophies
Marcel Stenvang, Maria Andreasen,
Jan Johannes Enghild and Daniel E. Otzen
Introduction 179
Challenges in Understanding the Role of
TGFBIp in Corneal Dystrophies 180
Molecular Properties of TGFBIp: A Multidomain
Protein with Four Homologous Domains 180
TGFBIp and Corneal Dystrophy 182
CD Mutations Induce Different TGFBIp
Aggregation Mechanisms 182
CD and Changes in Proteolytic Processing
of TGFBIp 183
TGFBIp Oligomerization 183
TGFBIp and Macromolecular Interactions 184
Aggregation Mechanism and Phenotypes 184
Future Treatment 185
Acknowledgments 186
References 186
17. Aß Fibril Polymorphism
and Alzheimer s Disease
Magdalena Bereza and Marcus Fändrich
Alzheimer s Disease: Relevance,
Neuropathology and Etiology 189
Cellular Formation and Chemical Variability
of Aß Peptide 189
The Amyloid Hypothesis and the Putative
Mechanism of Pathogenesis 190
General Topology and Polymorphism of Aß
Fibrils 190
Towards the Atomic Structures of Different
Aß Fibril Polymorphs 191
The Molecular Basis of Aß Fibril Polymorphism 193
Biologic Relevance of Polymorphic Fibril
Structures 194
Acknowledgments 195
References 195
18. Structural Heterogeneity and
Bioimaging of S100 Amyloid Assemblies
Sofia B. Carvalho, Hugo M. Botelho,
Cláudio M. Gomes, Isabel Cardoso,
Kiran Yanamandra, Ludmilla A. Morozova-Roche
and Gunter Fritz
Contents ix
Introduction 197
Structural Diversity of S100 Monomers
and Multimers 198
S100 Structure and Folding 198
Ca2+ and Other Metal-Binding Properties 199
S100 Oligomers, Aggregates and Amyloids 200
S100 Functional Oligomers 200
Amyloidogenic and Aggregation Potential
of S100 Proteins 201
Effects of SI 00 on Aggregation Cross-Seeding 201
Role of Metal Ions in Aggregation Pathways 202
Bioimaging of S100 Amyloids by AFM
and TEM 202
Techniques to Study Protein Amyloid
Formation 202
Sources of Amyloid - In Vivo and In Vitro 203
S100A8/A9 Amyloids 203
Amyloidogenic Properties of SI 00A6
Studied by TEM 204
S100B Amyloid Formation In Vitro 206
Ex Vivo S100A8/A9 Amyloids Imaged by
AFM and TEM 207
Macroscopic Amyloid Properties of Corpora
Amylacea Studied by Optical Microscopy 208
Conclusions 209
Abbreviations 209
Acknowledgments 209
References 210
19. Polymorphism of Tau Fibrils
Yoshiaki Furukawa
Introduction 213
Polymorphic Nature of Pathologic Tau Fibrils 213
Factors Affecting the Morphology of Tau Fibrils 214
Splicing Isoforms of Tau 214
Inducers of Tau Fibrillation 216
A Thiol-Disulfide Status of Tau 217
A Core Hypothesis for Generating Fibril
Polymorphism 218
Perspectives 219
References 220
20. Amyloid-Like Protofibrils with
Different Physical Properties
Annalisa Relini
Introduction
Protofibril Polymorphism
Coexistence of Different Protofibril
Populations
Mechanical Properties of Protofibrils
Concluding Remarks
Acknowledgments
References
223
224
225
227
229
230
230
21. Insulin Oligomers: Detection,
Characterization and Quantification
Using Different Analytical Methods
Mirco Sorci and Georges Belfort
Introduction 233
Spectroscopy 234
Mass Spectrometry (MS) 234
Electrospray Differential Mobility Analysis
(ES-DMA) 234
Nuclear Magnetic Resonance (NMR) 234
Scattering Techniques 235
Dynamic Light Scattering (DLS) 235
Small-Angle Neutron Scattering (SANS) 237
Small-Angle X-Ray Scattering (SAXS) 238
Microscopy 238
Atomic Force Microscopy (AFM) 238
Cryogenic Transmission Electron Microscopy
(cryo-TEM) 238
Separation Techniques 238
Size-Exclusion Chromatography (SEC) 238
Electrophoresis (NuPACE) 240
Capillary Electrophoresis (CE) 240
Membrane Filtration (MF) 240
Indirect Measurements 241
Cooling and Seeding Experiments 241
Theoretical Calculation 241
Conclusions 241
References 243
22. Imaging the Morphology and Structure
of Apolipoprotein Amyloid Fibrils
Yee-Foong Mok, Chai Lean Teoh,
Geoffrey J. Flowlett and Michael D.W. Griffin
Introduction 247
ApoA-l 247
ApoE 247
ApoC-ll 248
Structural Analysis of ApoC-ll Amyloid Fibrils 249
Flexibility and Tangling of ApoC-ll Amyloid
Fibrils 250
Characterization of Straight ApoC-ll Fibrils 251
Summary 253
References 253
23. Polymorphism of Amyloid Fibrils
and their Complexes with Catatase
Nathaniel G.N. Milton and J. Robin Harris
Introduction
Catatase Interactions with Amyloid-ß, Islet
Amyloid Polypeptide and Prion Protein
Fragments
255
256
X
Contents
Binding of Catalase to Aß, IAPP and PrP Fibrils 257
The Shared Amyloid Catalase Recognition
Sequence and Other Potential Amyloid
Fibril Interactions 259
Use of Catalase Binding to Amyloid Fibrils in
Drug Discovery 259
Conclusion 260
References 260
24. On Possible Function and Toxicity of
Multiple Oligomeric/Conformational
States of a Globular Protein - Human
Stefin B
Eva ¿erovnik
263
Introduction
Defining Intermediate States from which
Amyloid Fibrils were Initiated 263
Kinetic Model and Morphologies of Amyloid
Fibril Formation 265
Structural Data on Stefin Oligomers and
the Role of Proline Isomerism 266
Selective Interaction of the Tetramer of
Stefin B with Aß 267
The Role of Copper 268
Membrane Binding and Pore Formation 268
Conclusions and Perspective 268
Acknowledgments 268
References 268
25. Fibrillar Structures of Yeast Prion
Sup35 In Vivo
Hideki Taguchi and Shigeko Kawai-Noma
Introduction 271
Yeast Prion Sup35 as a Model Amyloid-
Forming Protein in Cells 271
In Vitro Fibril Formation of Sup35 272
Structures of Sup35 Amyloids in Yeast Cells 272
Transmission Electron Microscopy (TEM) 273
Correlative Light Electron Microscopy
(CLEM) 274
Cryo-Electron Tomography 274
Dynamic Properties of Sup35 Amyloids in
Living Yeast Cells 275
Single-Cell Imaging System for Monitoring
the Fate of Sup35-CFP Foci 275
Fluorescence Correlation Spectroscopy (FCS) 276
Fluorescence Recovery after Photobleaching
(FRAP) 278
Concluding Remarks 278
References 278
26. Glycosaminoglycans and Fibrillar
Polymorphism
Kirsten G. Malmos and Daniel E. Otzen
Introduction 281
Proteoglycan Components Responsible for
Protein Binding and Fibril Enhancement 282
The Polymeric Nature of CACs is Important
for Inducing Mature Amyloid Fibrils 283
GAGs Affect Fibril Morphology in
Different Ways 283
Specificity of GAG-Protein Interactions 285
GAGs can Induce Fibrils in Non-
Amyloidogenic Proteins 285
GAGs can Accelerate Fibrillation by Binding
Monomers or by Interacting with Oligomers 285
Future Perspectives and Challenges: The
Importance of Molecular Insights 288
Acknowledgments 288
References 288
27. Dopamine-Induced a-Synuclein
Oligomers
Agata Rekas, Roberto Cappai, Cyril Curtain
and Chi Le Lan Pham
The Role of Dopamine in a Healthy Brain
and in Parkinson s Disease 291
a-Synuclein:DA Oligomers - Discovery and
Properties 292
Shape and Structure of a-Syn:DA Oligomers 293
How Does DA Link a-Syn Molecules? 293
How Does DA Inhibit a-Synuclein Fibril
Formation? 297
Biologic Significance of a-Syn:DA Oligomers 298
References 299
28. The Formation of Amyloid-Like
Superstructures: On the Growth
of Amyloid Spherulites
Vito Foderà and Athene M. Donald
Large-Scale Polymorphism in Protein
Aggregation 301
Amyloid Spherulites: Hypotheses on the
Structural Arrangement 302
Factors Affecting the Formation of Insulin
Amyloid Spherulites 304
Effect of Temperature and Salt 304
Effect of p H 306
Effect of Protein Concentration 307
Conclusions and Perspectives 307
Contents
xi
Acknowledgments 308
References 308
29. Characterizing Nanoscale Morphologic
and Mechanical Properties of
a-SynucIein Amyloid Fibrils with
Atomic Force Microscopy
Kim K.M. Sweers, Martin Stockt,
Martin L. Bennink and Vinod Subramaniam
Introduction 309
aS Fibrils on Different Solid Surfaces 310
Preparation of Supported Lipid Bilayers on Mica 311
a-Synuclein Monomers on Supported Bilayers 312
a-Synuclein Fibrils on POPC-Supported Bilayers 312
Inferring the Mechanical Properties of Fibrils
from Images 317
Wild-Type Fibrils on a POPC-POPC
Supported Bilayer 319
Conclusions 320
Materials and Methods 320
a-Synuclein and Fibril Preparation 320
Sample Preparation 320
Atomic Force Microscopy 320
References 320
30. Polymorphism in Casein Protein
Aggregation and Amyloid Fibril
Formation
David C. Thorn, Heath Ecroyd and
John A. Carver
Introduction to the Casein Proteins 323
Biological Functions of Casein Proteins 323
Structural Features of Casein Proteins 323
Chapetone Ability of Casein Proteins 324
Amyloid Fibril-Forming Propensity of
K- and as2-Casein and the Preventative
Role of the Casein Micelle 324
Amorphous Aggregation Properties of Casein
Proteins Under Native Conditions 324
The Casein Micelle 324
The Individual Casein Proteins 325
Amyloid Fibril Formation by k- and
as2-Casein Proteins 325
Modification and Inhibition of k- and
as2-Casein Amyloid Fibril Formation by
ß- and as1-Caseins 328
Potential Bio-Nanomaterial Applications
of Casein Amyloid Fibrils 329
Conclusions 330
Acknowledgments 330
References 330
31. Structural Basis for the Polymorphism
of ß-Lactoglobulin Amyloid-Like Fibrils
Corianne C van den Akker, Michael Schleeger,
Mischa Bonn and Gijsje H Koenderink
Why ß-Lactoglobulin? 333
Formation Mechanisms of Amyloid-Like
Fibrils from ß-Lactoglobulin 333
Polymorphism of ß-Lactoglobulin Amyloids:
Rod-Like, Worm-Like and Straight Fibrils 334
Protein Concentration 334
Solution pH 335
Solvent 336
Ionic Strength 336
Shear Forces 336
Reaction Time 336
Molecular Structure of Amyloid Fibrils 336
Circular Dichroism Spectroscopy 336
FT-IR Spectroscopy 338
Raman Spectroscopy 338
VSFG Spectroscopy 339
Tip-Enhanced Raman Spectroscopy (TERS) 340
Conclusions 341
Acknowledgment 341
References 341
32. Fibrillation and Polymorphism
of Human Serum Albumin
Silvia Barbosa, Pablo Taboada
and Víctor Mosquera
Introduction 345
The Origin of Protein Misfolding 346
Protein Misfolding and Fibrillation 346
Relevant Characteristics of Prefibrillar
and Fibrillar States 347
The Fibrillation Process of Human Serum
Albumin 350
The Structure of Human Serum Albumin 350
The Influence of External Factors on HSA
Fibrillation 351
Fibrillation Kinetics of HSA 352
The Fibrillation Pathway of HSA 353
Some Potential Technologic Applications
of HSA Fibrils 358
Conclusions and Outlook 359
References 360
33. Formation of a-Helix-Based Twisted
Ribbon-Like Fibrils from Ionic-
Complementary Peptides
Meng Qin, Dawei Zou, Yi Cao and Wei Wang
x¡¡ Contents
Introduction
EMK8-II with Protected Terminus Forms
Twisted Ribbon-Like Fibrils
Structural Characteristics of EMK8-II Fibrils
Assembly Dynamics of EMK8-II Fibrils
Cooperative Balance of Hydrophobicity
and Ionic Interactions
The Assembly Mechanism of a-Helix-Based
Fibrils
Acknowledgments
References
34. Polymorphism, Metastable Species
and Interconversion: The Many
States of Glucagon Fibrils
Shirin D. Ghodke, Grethe V. Jensen,
Anna S.P. Svane, Katrin Weise,
Anne Sondergaard, Manja A. Behrens,
Jan Skov Pedersen, Niels Chr Nielsen,
Jesper S0ndergaard Pedersen,
Roland Winter and Daniel E. Otzen
363
364
364
366
368
370
370
370
374
Introduction
The Basis of Fibril Polymorphism: Different
Protofilament Packing and/or Different
Protofilaments 374
How to Obtain Different Types of Glucagon
Fibril: An Overview of the Current Literature 374
A Time-Resolved SAXS Study of the Effect of
Shaking on Fibrillation and Fibril Structure:
Different Degrees of Protofilament
Association Under Quiescent and Shaking
Conditions 375
Interconversion between Fibril Morphologies:
Metastable Fibril States Destabilized by
Elevated Temperatures 376
Hydration and Packing Modulate Fibrillation
and Fibril Stability 379
Inhibition of Glucagon Fibrillation by
Modified Cyclodextrins 382
Perspectives: Stable or Unstable Fibrils In Vivói 384
Acknowledgments 384
References 384
Part IV
Polymorphism of Protein Misfolding
and Aggregation Processes
35. Multiple Pathways of Lysozyme
Aggregation
Martin Muschol, Shannon E. Hill and
Mentor Mulaj
Introduction 389
Polymorphism of Amyloid Intermediates and
Multiple Assembly Pathways 389
Atomic Force Microscopy for Studying
Amyloid Self-Assembly 390
Characterizing Lysozyme Assembly Pathways
and their Respective Intermediates with
Atomic Force Microscopy 390
Lysozyme Fibril Assembly Follows Distinct
Assembly Pathways 390
Morphology of Amyloid Intermediates in
Either Pathway 391
Physical Characterization of Transient
Intermediates 392
Conclusions and Discussion 394
References 395
36. Structure-Function Studies of Amyloid
Pores in Alzheimer s Disease as a Case
Example of Neurodegenerative Diseases
Fernando Teran Arce, Hyunbum Jang,
Laura Connelly, Srinivasan Ramachandran,
Bruce L. Kagan, Ruth Nussinov and Ratnesh Lai
General Properties of Amyloids 397
Amyloids in Alzheimer s Disease 398
Interaction of Peptides with the Cell Membrane 398
Pore Hypothesis 399
Structural and Functional Studies of
Amyloid Pores 400
Functional Studies 400
Structural Studies 401
Alternative Mechanisms 403
Acknowledgments 404
References 404
37. Nanoscale Optical Imaging
of Protein Amyloids
Samrat Mukhopadhyay, Vijit Dalai
and Shruti Arya
Introduction 409
Structural Biology of Amyloids 410
Nanoscale Biophysics of Amyloid Fibrils
Using Super-Resolution Optical Imaging 412
Near-Field Scanning Optical Microscopy 412
Apertureless Near-Field Scanning Infra-Red
Microscopy 414
Direct Stochastic Optical Reconstruction
Microscopy 417
Photoactivation Localization Microscopy 419
Nanoscale Raman Imaging: Tip-Enhanced
Raman Scattering and Coherent Anti-Stokes
Raman Scattering 421
Contents
xiii
Conclusions and Future Projections
Acknowledgments
References
424
425
425
38. Assembly of Amyloid ß-Protein Variants
Containing Familial Alzheimer s Disease-
Linked Amino Acid Substitutions
Aida Attar, Derya Meral, Brigita Urbane
and Gal Bitan
Introduction: Minor Changes have Major
Effects
Point Mutations Affecting the Aß Sequence
Substitutions in Positions 21-23
N-terminal and C-terminal Substitutions
Conclusions
Acknowledgments
References
39. Role of Aberrant a-Synuclein-
Membrane Interactions
in Parkinson s Disease
Amy M. Griggs, Daniel Ysselstein
and Jean-Christophe Rochet
Introduction
Evidence for Membrane-Induced a-Syn
Self-Assembly
Conformations of a-Syn at the Membrane
Surface
A Role for Aberrant a-Syn-Membrane
Interactions in Neurotoxicity
Concluding Remarks
References
40. ELOA- Equine Lysozyme Complexes
with Oleic Acid: Structure and
Cytotoxicity Studied by Bio-Imaging
Techniques
Vladana Vukojevió, Alexei Klechikov and
Ludmilla A Morozova-Roche
Introduction 453
HAMLET: Occurrence In Vivo and In Vitro 453
Structural Similarity of EL
and a-Lactalbumins 454
The Production of HAMLET-Type Complexes 455
Protein Conformation in ELOA 455
ELOA Oligomeric Structure 456
ELOA Interaction with Lipid Bilayers 457
ELOA Cellular Toxicity 458
Conclusions 460
Acknowledgments 460
References 460
41. Structure of a Misfolded
Intermediate of a PDZ Domain
Alfonso De Simone, Stefano Gianni
and Michele Vendruscolo
Introduction
Results
The 0-value Approach to Determine
the Structures of Protein
463
464
Intermediates 464
A Structural Model of the Misfolded
429 Intermediate 468
430 Validation of the Structural Model of
430 the Misfolded Intermediate 468
436 Structural Models of the TSN and TS/
438 Transition States 469
439 Significance of the Structure of the
439 Misfolded Intermediate 471
Conclusions 472
Acknowledgments 472
References 473
42. Intranuclear Amyloid - Local
and Quantitative Analysis of
Protein Fibrillation in the Cell
443 Nucleus
444 Florian Arnhold and Anna von Mikecz
Disease-Associated Protein Fibrillation 475
445 Functional Amyloid 475
Characterization of Nuclear Protein
447 Fibrillation 477
447 Conclusions 482
448 Acknowledgments 483
References 483
43. Conversion of a-Helical Proteins
into an Alternative ß-Amyloid Fibril
Conformation
Jason C. Collins and Lesley H. Greene
Introduction to the Fibril Field 485
Transition of a-Helical Proteins into
Amyloid-Like Fibrils 487
Alpha-Helical Proteins Associated with
Disease States 487
Alpha-Helical Proteins not Associated
with Disease 490
Polymorphism of Fibrillar Species Associated
with a-Helical Proteins 492
Polymorphic Investigations of a-Helical
Proteins 493
Future Perspectives 499
References 499
xiv
Contents
44. The Effect of Shear Flow on Amyloid
Fibril Formation and Morphology
Innocent B. Bekard and Dave E. Dunstan
Introduction 503
Shear Flow and Protein Misfolding 504
Effect of Shear Flow on Fibril Formation 508
Observed Structures: Impact of Flow on Fibril
Structure and Mechanics 510
Conclusions 511
References 512
Subject Index 515
Name Index 523
|
any_adam_object | 1 |
author2 | Uverskij, Vladimir N. |
author2_role | edt |
author2_variant | v n u vn vnu |
author_GND | (DE-588)13389651X |
author_facet | Uverskij, Vladimir N. |
building | Verbundindex |
bvnumber | BV042142322 |
classification_rvk | WD 5100 |
ctrlnum | (OCoLC)915482587 (DE-599)BVBBV042142322 |
discipline | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01096nam a2200277 c 4500</leader><controlfield tag="001">BV042142322</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151002 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">141023s2014 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123944313</subfield><subfield code="9">978-0-12-394431-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)915482587</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042142322</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 5100</subfield><subfield code="0">(DE-625)148194:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bio-nanoimaging</subfield><subfield code="b">protein misfolding & aggregation</subfield><subfield code="c">ed. by Vladimir N.Uversky , Yuri L. Lyubchenko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier, Academic Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 526 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Uverskij, Vladimir N.</subfield><subfield code="0">(DE-588)13389651X</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027582278&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027582278</subfield></datafield></record></collection> |
id | DE-604.BV042142322 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:13:44Z |
institution | BVB |
isbn | 9780123944313 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027582278 |
oclc_num | 915482587 |
open_access_boolean | |
owner | DE-11 DE-29T |
owner_facet | DE-11 DE-29T |
physical | XIX, 526 S. Ill., graph. Darst. |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Elsevier, Academic Press |
record_format | marc |
spelling | Bio-nanoimaging protein misfolding & aggregation ed. by Vladimir N.Uversky , Yuri L. Lyubchenko Amsterdam [u.a.] Elsevier, Academic Press 2014 XIX, 526 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Uverskij, Vladimir N. (DE-588)13389651X edt HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027582278&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bio-nanoimaging protein misfolding & aggregation |
title | Bio-nanoimaging protein misfolding & aggregation |
title_auth | Bio-nanoimaging protein misfolding & aggregation |
title_exact_search | Bio-nanoimaging protein misfolding & aggregation |
title_full | Bio-nanoimaging protein misfolding & aggregation ed. by Vladimir N.Uversky , Yuri L. Lyubchenko |
title_fullStr | Bio-nanoimaging protein misfolding & aggregation ed. by Vladimir N.Uversky , Yuri L. Lyubchenko |
title_full_unstemmed | Bio-nanoimaging protein misfolding & aggregation ed. by Vladimir N.Uversky , Yuri L. Lyubchenko |
title_short | Bio-nanoimaging |
title_sort | bio nanoimaging protein misfolding aggregation |
title_sub | protein misfolding & aggregation |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027582278&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT uverskijvladimirn bionanoimagingproteinmisfoldingaggregation |