CO2 biofixation by microalgae: modeling, estimation and control
Due to the consequences of globa l warming and significant greenhouse gas emissions, several ideas have been studied to reduce these emissions or to suggest solut ions for pollutant remov al. The most promising ideas are reduced consumption, waste recovery and waste treatment by biological systems....
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2014
London ISTE |
Schriftenreihe: | Focus : Bioengineering and Health Science Series
|
Schlagworte: | |
Online-Zugang: | FRO01 UBT01 Volltext |
Zusammenfassung: | Due to the consequences of globa l warming and significant greenhouse gas emissions, several ideas have been studied to reduce these emissions or to suggest solut ions for pollutant remov al. The most promising ideas are reduced consumption, waste recovery and waste treatment by biological systems. In this latter category, studies have demonstrated that the use of microalgae is a very promising solution for the biofixation of carbon dioxide. In fact, these micro-organisms are able to offset high levels of CO2 thanks to photosynthesis. Microalgae are also used in various fields (food industry, fertilizers, biofuel, etc.). To obtain a n optimal C O2 sequestration us ing micr oal gae, their cul tivatio n has to be c arried ou t in a f avorable e nvironment, corresponding to optimal operating conditions (temperature, nutrients, pH, light, etc.). Therefore, microalgae are grown in an enclosure, i.e. photobioreactors, which notably operate in continuous mode. This type of closed reactor notably enables us to reduce culture contamination, to improve CO2 transfer and to better control the cultivation system. This last point involves the regulation of concentrations (biomass, substrate or by-product) in addition to conventional regulations (pH, temperature). To do this, we have to establish a model of the system and to identify its parameters; to put in place estimators in order to rebuild variables that are not measured online (software sensor); and finally to implement a control law, in order to maintain the system in optimal conditions despite modeling errors and environmental disturbances that can have an influence on the system (pH variations, temperature, light, biofilm appearance, etc.). |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9781118984451 9781118984468 9781118984475 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042141864 | ||
003 | DE-604 | ||
005 | 20141121 | ||
007 | cr|uuu---uuuuu | ||
008 | 141023s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781118984451 |c ePub |9 978-1-118-98445-1 | ||
020 | |a 9781118984468 |c ePDF |9 978-1-118-98446-8 | ||
020 | |a 9781118984475 |c Online |9 978-1-118-98447-5 | ||
024 | 7 | |a 10.1002/9781118984475 |2 doi | |
035 | |a (OCoLC)885906468 | ||
035 | |a (DE-599)BVBBV042141864 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-861 | ||
082 | 0 | |a 660.6/2 |2 23 | |
245 | 1 | 0 | |a CO2 biofixation by microalgae |b modeling, estimation and control |c Sihem Tebbani ; Filipa Lopes ; Rayen Filali ; Didier Dumur ; Dominique Pareau |
246 | 1 | 3 | |a Carbon dioxide biofixation by microalgae |
264 | 1 | |a Hoboken, NJ |b Wiley |c 2014 | |
264 | 1 | |a London |b ISTE | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Focus : Bioengineering and Health Science Series | |
520 | |a Due to the consequences of globa l warming and significant greenhouse gas emissions, several ideas have been studied to reduce these emissions or to suggest solut ions for pollutant remov al. The most promising ideas are reduced consumption, waste recovery and waste treatment by biological systems. In this latter category, studies have demonstrated that the use of microalgae is a very promising solution for the biofixation of carbon dioxide. In fact, these micro-organisms are able to offset high levels of CO2 thanks to photosynthesis. Microalgae are also used in various fields (food industry, fertilizers, biofuel, etc.). To obtain a n optimal C O2 sequestration us ing micr oal gae, their cul tivatio n has to be c arried ou t in a f avorable e nvironment, corresponding to optimal operating conditions (temperature, nutrients, pH, light, etc.). Therefore, microalgae are grown in an enclosure, i.e. photobioreactors, which notably operate in continuous mode. This type of closed reactor notably enables us to reduce culture contamination, to improve CO2 transfer and to better control the cultivation system. This last point involves the regulation of concentrations (biomass, substrate or by-product) in addition to conventional regulations (pH, temperature). To do this, we have to establish a model of the system and to identify its parameters; to put in place estimators in order to rebuild variables that are not measured online (software sensor); and finally to implement a control law, in order to maintain the system in optimal conditions despite modeling errors and environmental disturbances that can have an influence on the system (pH variations, temperature, light, biofilm appearance, etc.). | ||
650 | 7 | |a SCIENCE / Chemistry / Industrial & Technical |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Chemical & Biochemical |2 bisacsh | |
650 | 4 | |a Chemie | |
650 | 4 | |a Microalgae / Biotechnology | |
650 | 4 | |a Carbon dioxide / Metabolism | |
650 | 4 | |a Photosynthesis | |
650 | 4 | |a Carbon sequestration | |
700 | 1 | |a Tebbani, Sihem |e Sonstige |4 oth | |
700 | 1 | |a Lopes, Filipa |e Sonstige |4 oth | |
700 | 1 | |a Filali, Rayen |e Sonstige |4 oth | |
700 | 1 | |a Dumur, Didier |e Sonstige |4 oth | |
700 | 1 | |a Pareau, Dominique |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-84821-598-6 |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781118984475 |x Verlag |3 Volltext |
912 | |a ZDB-35-WIC | ||
940 | 1 | |q FHR_PDA_WIC | |
940 | 1 | |q UBG_PDA_WIC | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027581825 | ||
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781118984475 |l FRO01 |p ZDB-35-WIC |q FRO_PDA_WIC |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781118984475 |l UBT01 |p ZDB-35-WIC |q UBT_Wiley_EK_2014 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804152627424919552 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV042141864 |
collection | ZDB-35-WIC |
ctrlnum | (OCoLC)885906468 (DE-599)BVBBV042141864 |
dewey-full | 660.6/2 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 660 - Chemical engineering |
dewey-raw | 660.6/2 |
dewey-search | 660.6/2 |
dewey-sort | 3660.6 12 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03899nmm a2200565zc 4500</leader><controlfield tag="001">BV042141864</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20141121 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">141023s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118984451</subfield><subfield code="c">ePub</subfield><subfield code="9">978-1-118-98445-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118984468</subfield><subfield code="c">ePDF</subfield><subfield code="9">978-1-118-98446-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118984475</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-118-98447-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9781118984475</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)885906468</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042141864</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-861</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.6/2</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CO2 biofixation by microalgae</subfield><subfield code="b">modeling, estimation and control</subfield><subfield code="c">Sihem Tebbani ; Filipa Lopes ; Rayen Filali ; Didier Dumur ; Dominique Pareau</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Carbon dioxide biofixation by microalgae</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2014</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">ISTE</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Focus : Bioengineering and Health Science Series</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Due to the consequences of globa l warming and significant greenhouse gas emissions, several ideas have been studied to reduce these emissions or to suggest solut ions for pollutant remov al. The most promising ideas are reduced consumption, waste recovery and waste treatment by biological systems. In this latter category, studies have demonstrated that the use of microalgae is a very promising solution for the biofixation of carbon dioxide. In fact, these micro-organisms are able to offset high levels of CO2 thanks to photosynthesis. Microalgae are also used in various fields (food industry, fertilizers, biofuel, etc.). To obtain a n optimal C O2 sequestration us ing micr oal gae, their cul tivatio n has to be c arried ou t in a f avorable e nvironment, corresponding to optimal operating conditions (temperature, nutrients, pH, light, etc.). Therefore, microalgae are grown in an enclosure, i.e. photobioreactors, which notably operate in continuous mode. This type of closed reactor notably enables us to reduce culture contamination, to improve CO2 transfer and to better control the cultivation system. This last point involves the regulation of concentrations (biomass, substrate or by-product) in addition to conventional regulations (pH, temperature). To do this, we have to establish a model of the system and to identify its parameters; to put in place estimators in order to rebuild variables that are not measured online (software sensor); and finally to implement a control law, in order to maintain the system in optimal conditions despite modeling errors and environmental disturbances that can have an influence on the system (pH variations, temperature, light, biofilm appearance, etc.).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Chemistry / Industrial & Technical</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Chemical & Biochemical</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microalgae / Biotechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon dioxide / Metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon sequestration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tebbani, Sihem</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lopes, Filipa</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Filali, Rayen</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dumur, Didier</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pareau, Dominique</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-84821-598-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781118984475</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHR_PDA_WIC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBG_PDA_WIC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027581825</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781118984475</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FRO_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781118984475</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">UBT_Wiley_EK_2014</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042141864 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:13:43Z |
institution | BVB |
isbn | 9781118984451 9781118984468 9781118984475 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027581825 |
oclc_num | 885906468 |
open_access_boolean | |
owner | DE-703 DE-861 |
owner_facet | DE-703 DE-861 |
physical | 1 Online-Ressource |
psigel | ZDB-35-WIC FHR_PDA_WIC UBG_PDA_WIC ZDB-35-WIC FRO_PDA_WIC ZDB-35-WIC UBT_Wiley_EK_2014 |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Wiley ISTE |
record_format | marc |
series2 | Focus : Bioengineering and Health Science Series |
spelling | CO2 biofixation by microalgae modeling, estimation and control Sihem Tebbani ; Filipa Lopes ; Rayen Filali ; Didier Dumur ; Dominique Pareau Carbon dioxide biofixation by microalgae Hoboken, NJ Wiley 2014 London ISTE 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Focus : Bioengineering and Health Science Series Due to the consequences of globa l warming and significant greenhouse gas emissions, several ideas have been studied to reduce these emissions or to suggest solut ions for pollutant remov al. The most promising ideas are reduced consumption, waste recovery and waste treatment by biological systems. In this latter category, studies have demonstrated that the use of microalgae is a very promising solution for the biofixation of carbon dioxide. In fact, these micro-organisms are able to offset high levels of CO2 thanks to photosynthesis. Microalgae are also used in various fields (food industry, fertilizers, biofuel, etc.). To obtain a n optimal C O2 sequestration us ing micr oal gae, their cul tivatio n has to be c arried ou t in a f avorable e nvironment, corresponding to optimal operating conditions (temperature, nutrients, pH, light, etc.). Therefore, microalgae are grown in an enclosure, i.e. photobioreactors, which notably operate in continuous mode. This type of closed reactor notably enables us to reduce culture contamination, to improve CO2 transfer and to better control the cultivation system. This last point involves the regulation of concentrations (biomass, substrate or by-product) in addition to conventional regulations (pH, temperature). To do this, we have to establish a model of the system and to identify its parameters; to put in place estimators in order to rebuild variables that are not measured online (software sensor); and finally to implement a control law, in order to maintain the system in optimal conditions despite modeling errors and environmental disturbances that can have an influence on the system (pH variations, temperature, light, biofilm appearance, etc.). SCIENCE / Chemistry / Industrial & Technical bisacsh TECHNOLOGY & ENGINEERING / Chemical & Biochemical bisacsh Chemie Microalgae / Biotechnology Carbon dioxide / Metabolism Photosynthesis Carbon sequestration Tebbani, Sihem Sonstige oth Lopes, Filipa Sonstige oth Filali, Rayen Sonstige oth Dumur, Didier Sonstige oth Pareau, Dominique Sonstige oth Erscheint auch als Druckausgabe 978-1-84821-598-6 https://onlinelibrary.wiley.com/doi/book/10.1002/9781118984475 Verlag Volltext |
spellingShingle | CO2 biofixation by microalgae modeling, estimation and control SCIENCE / Chemistry / Industrial & Technical bisacsh TECHNOLOGY & ENGINEERING / Chemical & Biochemical bisacsh Chemie Microalgae / Biotechnology Carbon dioxide / Metabolism Photosynthesis Carbon sequestration |
title | CO2 biofixation by microalgae modeling, estimation and control |
title_alt | Carbon dioxide biofixation by microalgae |
title_auth | CO2 biofixation by microalgae modeling, estimation and control |
title_exact_search | CO2 biofixation by microalgae modeling, estimation and control |
title_full | CO2 biofixation by microalgae modeling, estimation and control Sihem Tebbani ; Filipa Lopes ; Rayen Filali ; Didier Dumur ; Dominique Pareau |
title_fullStr | CO2 biofixation by microalgae modeling, estimation and control Sihem Tebbani ; Filipa Lopes ; Rayen Filali ; Didier Dumur ; Dominique Pareau |
title_full_unstemmed | CO2 biofixation by microalgae modeling, estimation and control Sihem Tebbani ; Filipa Lopes ; Rayen Filali ; Didier Dumur ; Dominique Pareau |
title_short | CO2 biofixation by microalgae |
title_sort | co2 biofixation by microalgae modeling estimation and control |
title_sub | modeling, estimation and control |
topic | SCIENCE / Chemistry / Industrial & Technical bisacsh TECHNOLOGY & ENGINEERING / Chemical & Biochemical bisacsh Chemie Microalgae / Biotechnology Carbon dioxide / Metabolism Photosynthesis Carbon sequestration |
topic_facet | SCIENCE / Chemistry / Industrial & Technical TECHNOLOGY & ENGINEERING / Chemical & Biochemical Chemie Microalgae / Biotechnology Carbon dioxide / Metabolism Photosynthesis Carbon sequestration |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/9781118984475 |
work_keys_str_mv | AT tebbanisihem co2biofixationbymicroalgaemodelingestimationandcontrol AT lopesfilipa co2biofixationbymicroalgaemodelingestimationandcontrol AT filalirayen co2biofixationbymicroalgaemodelingestimationandcontrol AT dumurdidier co2biofixationbymicroalgaemodelingestimationandcontrol AT pareaudominique co2biofixationbymicroalgaemodelingestimationandcontrol AT tebbanisihem carbondioxidebiofixationbymicroalgae AT lopesfilipa carbondioxidebiofixationbymicroalgae AT filalirayen carbondioxidebiofixationbymicroalgae AT dumurdidier carbondioxidebiofixationbymicroalgae AT pareaudominique carbondioxidebiofixationbymicroalgae |