Modelling physics with Microsoft Excel:
The purpose of this work is to show some of the ways in which Microsoft Excel may be used to solve numerical problems in the field of physics. But why use Excel in the first place? Certainly Excel is never going to out-perform the wonderful symbolic algebra tools that we have today - Mathematica. Ma...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
San Rafael, Calif.
Morgan & Claypool
2014
Bristol IOP Publishing |
Ausgabe: | Version: 20141001 |
Schriftenreihe: | IOP concise physics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The purpose of this work is to show some of the ways in which Microsoft Excel may be used to solve numerical problems in the field of physics. But why use Excel in the first place? Certainly Excel is never going to out-perform the wonderful symbolic algebra tools that we have today - Mathematica. Mathcad, Maple, MATLAB, etc. However, from a pedagogical stance Excel has the advantage of not being a 'black box' approach to problem solving. The user must do a lot more work than just call up a function. The intermediate steps in a calculation are displayed on the worksheet—of course this is not true with the Solver add-in which is a wonderful 'black box'. Another advantage is the somewhat less steep learning curve. A high school student can quickly lean how to get Excel to do useful calculations. |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9781627054195 9781627054188 |
DOI: | 10.1088/978-1-627-05419-5 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV042134902 | ||
003 | DE-604 | ||
005 | 20151210 | ||
007 | cr|uuu---uuuuu | ||
008 | 141020s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781627054195 |c Online |9 978-1-627-05419-5 | ||
020 | |a 9781627054188 |c Print |9 978-1-627-05418-8 | ||
024 | 7 | |a 10.1088/978-1-627-05419-5 |2 doi | |
035 | |a (OCoLC)895469469 | ||
035 | |a (DE-599)BVBBV042134902 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-19 |a DE-20 | ||
100 | 1 | |a Liengme, Bernard V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Modelling physics with Microsoft Excel |c Bernard Liengme |
250 | |a Version: 20141001 | ||
264 | 1 | |a San Rafael, Calif. |b Morgan & Claypool |c 2014 | |
264 | 1 | |a Bristol |b IOP Publishing | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a IOP concise physics | |
520 | |a The purpose of this work is to show some of the ways in which Microsoft Excel may be used to solve numerical problems in the field of physics. But why use Excel in the first place? Certainly Excel is never going to out-perform the wonderful symbolic algebra tools that we have today - Mathematica. Mathcad, Maple, MATLAB, etc. However, from a pedagogical stance Excel has the advantage of not being a 'black box' approach to problem solving. The user must do a lot more work than just call up a function. The intermediate steps in a calculation are displayed on the worksheet—of course this is not true with the Solver add-in which is a wonderful 'black box'. Another advantage is the somewhat less steep learning curve. A high school student can quickly lean how to get Excel to do useful calculations. | ||
650 | 0 | 7 | |a Numerisches Modell |0 (DE-588)4338132-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physik |0 (DE-588)4045956-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a EXCEL |0 (DE-588)4138932-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 0 | 1 | |a Numerisches Modell |0 (DE-588)4338132-7 |D s |
689 | 0 | 2 | |a EXCEL |0 (DE-588)4138932-3 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1088/978-1-627-05419-5 |x Verlag |3 Volltext |
912 | |a ZDB-135-ICP |a ZDB-135-IAL | ||
940 | 1 | |q ZDB-135-ICP_Release1 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027574993 |
Datensatz im Suchindex
_version_ | 1804152616302673920 |
---|---|
any_adam_object | |
author | Liengme, Bernard V. |
author_facet | Liengme, Bernard V. |
author_role | aut |
author_sort | Liengme, Bernard V. |
author_variant | b v l bv bvl |
building | Verbundindex |
bvnumber | BV042134902 |
collection | ZDB-135-ICP ZDB-135-IAL |
ctrlnum | (OCoLC)895469469 (DE-599)BVBBV042134902 |
doi_str_mv | 10.1088/978-1-627-05419-5 |
edition | Version: 20141001 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02302nmm a2200445 c 4500</leader><controlfield tag="001">BV042134902</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151210 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">141020s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781627054195</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-627-05419-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781627054188</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-627-05418-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1088/978-1-627-05419-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)895469469</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042134902</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liengme, Bernard V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling physics with Microsoft Excel</subfield><subfield code="c">Bernard Liengme</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Version: 20141001</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Rafael, Calif.</subfield><subfield code="b">Morgan & Claypool</subfield><subfield code="c">2014</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Bristol</subfield><subfield code="b">IOP Publishing</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">IOP concise physics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The purpose of this work is to show some of the ways in which Microsoft Excel may be used to solve numerical problems in the field of physics. But why use Excel in the first place? Certainly Excel is never going to out-perform the wonderful symbolic algebra tools that we have today - Mathematica. Mathcad, Maple, MATLAB, etc. However, from a pedagogical stance Excel has the advantage of not being a 'black box' approach to problem solving. The user must do a lot more work than just call up a function. The intermediate steps in a calculation are displayed on the worksheet—of course this is not true with the Solver add-in which is a wonderful 'black box'. Another advantage is the somewhat less steep learning curve. A high school student can quickly lean how to get Excel to do useful calculations.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Modell</subfield><subfield code="0">(DE-588)4338132-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">EXCEL</subfield><subfield code="0">(DE-588)4138932-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Modell</subfield><subfield code="0">(DE-588)4338132-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">EXCEL</subfield><subfield code="0">(DE-588)4138932-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1088/978-1-627-05419-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-135-ICP</subfield><subfield code="a">ZDB-135-IAL</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-135-ICP_Release1</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027574993</subfield></datafield></record></collection> |
id | DE-604.BV042134902 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:13:33Z |
institution | BVB |
isbn | 9781627054195 9781627054188 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027574993 |
oclc_num | 895469469 |
open_access_boolean | |
owner | DE-703 DE-19 DE-BY-UBM DE-20 |
owner_facet | DE-703 DE-19 DE-BY-UBM DE-20 |
physical | 1 Online-Ressource |
psigel | ZDB-135-ICP ZDB-135-IAL ZDB-135-ICP_Release1 |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Morgan & Claypool IOP Publishing |
record_format | marc |
series2 | IOP concise physics |
spelling | Liengme, Bernard V. Verfasser aut Modelling physics with Microsoft Excel Bernard Liengme Version: 20141001 San Rafael, Calif. Morgan & Claypool 2014 Bristol IOP Publishing 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier IOP concise physics The purpose of this work is to show some of the ways in which Microsoft Excel may be used to solve numerical problems in the field of physics. But why use Excel in the first place? Certainly Excel is never going to out-perform the wonderful symbolic algebra tools that we have today - Mathematica. Mathcad, Maple, MATLAB, etc. However, from a pedagogical stance Excel has the advantage of not being a 'black box' approach to problem solving. The user must do a lot more work than just call up a function. The intermediate steps in a calculation are displayed on the worksheet—of course this is not true with the Solver add-in which is a wonderful 'black box'. Another advantage is the somewhat less steep learning curve. A high school student can quickly lean how to get Excel to do useful calculations. Numerisches Modell (DE-588)4338132-7 gnd rswk-swf Physik (DE-588)4045956-1 gnd rswk-swf EXCEL (DE-588)4138932-3 gnd rswk-swf Physik (DE-588)4045956-1 s Numerisches Modell (DE-588)4338132-7 s EXCEL (DE-588)4138932-3 s DE-604 https://doi.org/10.1088/978-1-627-05419-5 Verlag Volltext |
spellingShingle | Liengme, Bernard V. Modelling physics with Microsoft Excel Numerisches Modell (DE-588)4338132-7 gnd Physik (DE-588)4045956-1 gnd EXCEL (DE-588)4138932-3 gnd |
subject_GND | (DE-588)4338132-7 (DE-588)4045956-1 (DE-588)4138932-3 |
title | Modelling physics with Microsoft Excel |
title_auth | Modelling physics with Microsoft Excel |
title_exact_search | Modelling physics with Microsoft Excel |
title_full | Modelling physics with Microsoft Excel Bernard Liengme |
title_fullStr | Modelling physics with Microsoft Excel Bernard Liengme |
title_full_unstemmed | Modelling physics with Microsoft Excel Bernard Liengme |
title_short | Modelling physics with Microsoft Excel |
title_sort | modelling physics with microsoft excel |
topic | Numerisches Modell (DE-588)4338132-7 gnd Physik (DE-588)4045956-1 gnd EXCEL (DE-588)4138932-3 gnd |
topic_facet | Numerisches Modell Physik EXCEL |
url | https://doi.org/10.1088/978-1-627-05419-5 |
work_keys_str_mv | AT liengmebernardv modellingphysicswithmicrosoftexcel |