Advanced linear algebra:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
CRC Press
2014
|
Schriftenreihe: | Textbooks in mathematics
A Chapman & Hall book |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | Includes bibliographical references |
Beschreibung: | XXII, 609 S. graph. Darst. |
ISBN: | 9781466559011 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042103764 | ||
003 | DE-604 | ||
005 | 20150216 | ||
007 | t | ||
008 | 141006s2014 d||| |||| 00||| eng d | ||
020 | |a 9781466559011 |c hbk. |9 978-1-4665-5901-1 | ||
035 | |a (OCoLC)889985557 | ||
035 | |a (DE-599)BVBBV042103764 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-11 |a DE-824 |a DE-83 |a DE-634 | ||
082 | 0 | |a 512/.5 |2 23 | |
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
084 | |a 15-01 |2 msc | ||
100 | 1 | |a Loehr, Nicholas A. |e Verfasser |0 (DE-588)143771701 |4 aut | |
245 | 1 | 0 | |a Advanced linear algebra |c Nicholas Loehr |
264 | 1 | |a Boca Raton [u.a.] |b CRC Press |c 2014 | |
300 | |a XXII, 609 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Textbooks in mathematics | |
490 | 0 | |a A Chapman & Hall book | |
500 | |a Includes bibliographical references | ||
650 | 4 | |a Algebras, Linear | |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
653 | |a Electronic books | ||
689 | 0 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027544332&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027544332&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-027544332 |
Datensatz im Suchindex
_version_ | 1804152569103122432 |
---|---|
adam_text | Contents
й
Preface
xvii
I
Background
on Algebraic Structures
1
1
Overview of Algebraic Systems
3
1.1
Groups
...................,.................. 3
1.2
Rings and Fields
................................. 4
1.3
Vector Spaces
.................................. 6
1.4
Subsystems
.................................... 7
1.5
Product Systems
................................. 8
1.6
Quotient Systems
................................ 9
1.7
Homomorphisms
................................. 11
1.8
Spanning, Linear Independence, Basis, and Dimension
............ 13
1.9
Summary
..................................... 15
1.10
Exercises
..................................... 17
2
Permutations
23
2.1
Symmetric Groups
................................ 23
2.2
Representing Functions as Directed Graphs
.................. 24
2.3
Cycle Decompositions of Permutations
.................... 24
2.4
Composition of Cycles
.............................. 26
2.5
Factorizations of Permutations
......................... 27
2.6
Inversions and Sorting
.............................. 28
2.7
Signs of Permutations
.............................. 29
2.8
Summary
..................................... 30
2.9
Exercises
..................................... 30
3
Polynomials
35
3.1
Intuitive Definition of Polynomials
....................... 35
3.2
Algebraic Operations on Polynomials
..................... 36
3.3
Formal Power Series and Polynomials
..................... 37
3.4
Properties of Degree
............................... 39
3.5
Evaluating Polynomials
............................. 40
3.6
Polynomial Division with Remainder
..................... 41
3.7
Divisibility and Associates
........................... 43
3.8
Greatest Common Divisors of Polynomials
.................. 44
3.9
GCDs of Lists of Polynomials
......................... 45
3.10
Matrix Reduction Algorithm for GCDs
.................... 46
3.11
Roots of Polynomials
.............................. 48
3.12
Irreducible Polynomials
............................. 49
3.13
Factorization of Polynomials into
Irreducibles
................. 51
3.14
Prime Factorizations and Divisibility
..................... 52
vii
viii Contents
3.15
Irreducible Polynomials in Q[x]
......................... 53
3.16
Irreducibility in Q[x] via Reduction Mod
ρ
.................. 54
3.17
Eisenstein s Irreducibility Criterion for Q[x]
.................. 54
3.18
Kronecker s Algorithm for Factoring in Q[x]
................. 55
3.19
Algebraic Elements and Minimal Polynomials
................ 56
3.20 Multivariable
Polynomials
........................... 58
3.21
Summary
..................................... 60
3.22
Exercises
..................................... 62
II Matrices
71
4
Basic Matrix Operations
73
4.1
Formal Definition of Matrices and Vectors
.................. 73
4.2
Vector Spaces of Functions
........................... 74
4.3
Matrix Operations via Entries
......................... 75
4.4
Properties of Matrix Multiplication
.............·......... 77
4.5
Generalized Associativity
............................ 78
4.6
Invertible Matrices
................................ 79
4.7
Matrix Operations via Columns
........................ 81
4.8
Matrix Operations via Rows
.......................... 83
4.9
Elementary Operations and Elementary Matrices
.............. 84
4.10
Elementary Matrices and Gaussian Elimination
............... 86
4.11
Elementary Matrices and Invertibility
..................... 87
4.12
Row Rank and Column Rank
.......................... 87
4.13
Conditions for Invertibility of a Matrix
.................... 89
4.14
Summary
..................................... 90
4.15
Exercises
..................................... 92
5
Determinants via Calculations
101
5.1
Matrices with Entries in a Ring
........................ 101
5.2
Explicit Definition of the Determinant
..................... 102
5.3
Diagonal and Triangular Matrices
....................... 103
5.4
Changing Variables
............................... 103
5.5
Transposes and Determinants
......................... 104
5.6
Multilinearity and the Alternating Property
................. 106
5.7
Elementary Row Operations and Determinants
................ 107
5.8
Determinant Properties Involving Columns
.................. 109
5.9
Product Formula via Elementary Matrices
.................. 109
5.10
Laplace Expansions
...............................
Ill
5.11
Classical
Adjoints
and Inverses
......................... 113
5.12
Cramer s Rule
.................................. 114
5.13
Product Formula for Determinants
....................... 115
5.14
Cauchy-Binet Formula
............................. 116
5.15
Cayley-Hamilton Theorem
........................... 118
5.16
Permanents
.................................... 120
5.17
Summary
..................................... 121
5.18
Exercises
..................................... 123
Contents ix
6
Concrete
vs. Abstract Linear Algebra
131
6.1
Concrete Column Vectors vs. Abstract Vectors
................ 131
6.2
Examples of Computing Coordinates
..................... 133
6.3
Concrete vs. Abstract Vector Space Operations
................ 135
6.4
Matrices vs. Linear Maps
............................. 136
6.5
Examples of Matrices Associated with Linear Maps
............. 138
6.6
Vector Operations on Matrices and Linear Maps
............... 140
6.7
Matrix Transpose vs. Dual Maps
........................ 141
6.8
Matrix/Vector Multiplication vs. Evaluation of Maps
............ 142
6.9
Matrix Multiplication vs. Composition of Linear Maps
........... 142
6.10
Transition Matrices and Changing Coordinates
................ 143
6.11
Changing Bases
................................. 144
6.12
Algebras of Matrices and Linear Operators
.................. 145
6.13
Similarity of Matrices and Linear Maps
.................... 147
6.14
Diagonalizability and Triangulability
..................... 147
6.15
Block-Triangular Matrices and Invariant Subspaces
............. 149
6.16
Block-Diagonal Matrices and Reducing Subspaces
.............. 150
6.17
Idempotent Matrices and Projections
..................... 151
6.18
Bilinear Maps and Matrices
........................... 152
6.19
Congruence of Matrices
............................. 153
6.20
Real Inner Product Spaces and Orthogonal Matrices
............. 154
6.21
Complex Inner Product Spaces and Unitary Matrices
............ 155
6.22
Summary
..................................... 156
6.23
Exercises
..................................... 161
III Matrices with Special Structure
167
7
Hermitian, Positive Definite, Unitary, and Normal Matrices
169
7.1
Conjugate-Transpose of a Matrix
........................ 169
7.2
Hermitian Matrices
............................... 171
7.3
Hermitian Decomposition of a Matrix
..................... 172
7.4
Positive Definite Matrices
............................ 173
7.5
Unitary Matrices
................................. 174
7.6
Unitary Similarity
................................ 176
7.7
Unitary Triangularization
............................ 177
7.8
Simultaneous Triangularization
......................... 178
7.9
Normal Matrices and Unitary Diagonalization
................ 180
7.10
Polynomials and Commuting Matrices
..................... 181
7.11
Simultaneous Unitary Diagonalization
..................... 182
7.12
Polar Decomposition: Invertible Case
..................... 183
7.13
Polar Decomposition: General Case
...................... 134
7.14
Interlacing Eigenvalues for Hermitian Matrices
................ 185
7.15
Determinant Criterion for Positive Definite Matrices
............ . 187
7.16
Summary
..................................... 188
7.17
Exercises
..................................... 189
8
Jordan Canonical Forms
195
8.1
Examples of
Nilpotent
Maps
........,................. 196
8.2
Partition Diagrams
............................... 197
8.3
Partition Diagrams and
Nilpotent
Maps
.................... 198
8.4
Computing Images via Partition Diagrams
.................. 199
x
Contents
8.5 Computing Null Spaces via Partition
Diagrams
................ 200
8.6
Classification of
Nilpotent
Maps (Stage
1) .................. 201
8.7
Classification of
Nilpotent
Maps (Stage
2) .................. 202
8.8
Classification of
Nilpotent
Maps (Stage
3) .................. 203
8.9
Fitting s Lemma
................................. 204
8.10
Existence of Jordan Canonical Forms
..................... 205
8.11
Uniqueness of Jordan Canonical Forms
.................... 206
8.12
Computing Jordan Canonical Forms
...................... 207
8.13
Application to Differential Equations
..................... 209
8.14
Minimal Polynomials
.............................. 210
8.15
Jordan-Chevalley Decomposition of a Linear Operator
........... 211
8.16
Summary
..................................... 212
8.17
Exercises
..................................... 213
9
Matrix Factorizations
219
9.1
Approximation by
Orthonormal
Vectors
.................... 220
9.2
Gram-Schmidt Orthonormalization
...................... 221
9.3
Gram-Schmidt QR Factorization
........................ 222
9.4
Householder Reflections
............................. 224
9.5
Householder QR Factorization
......................... 226
9.6
LU
Factorization
................................. 227
9.7
Example of the
LU
Factorization
........................ 229
9.8
LU
Factorizations and Gaussian Elimination
................. 230
9.9
Permuted
LU
Factorizations
.......................... 232
9.10
Cholesky Factorization
............................. 234
9.11
Least Squares Approximation
.......................... 235
9.12
Singular Value Decomposition
......................... 236
9.13
Summary
..................................... 237
9.14
Exercises
..................................... 239
10
Iterative Algorithms in Numerical Linear Algebra
245
10.1
Richardson s Algorithm
............................. 245
10.2
Jacobi s Algorithm
................................ 246
10.3
Gauss-Seidel Algorithm
............................. 247
10.4
Vector Norms
.................................. 248
10.5
Metric Spaces
.................................. 250
10.6
Convergence of Sequences
............................ 250
10.7
Comparable Norms
............................... 251
10.8
Matrix Norms
.................................. 252
10.9
Formulas for Matrix Norms
........................... 254
10.10
Matrix Inversion via Geometric Series
.................... 255
10.11
Affine
Iteration and Richardson s Algorithm
................. 256
10.12
Splitting Matrices and Jacobi s Algorithm
.................. 257
10.13
Induced Matrix Norms and the Spectral Radius
............... 257
10.14
Analysis of the Gauss-Seidel Algorithm
................... 259
10.15
Power Method for Finding Eigenvalues
.................... 259
10.16
Shifted and Inverse Power Method
...................... 261
10.17
Deflation
..................................... 262
10.18
Summary
.................................... 262
10.19
Exercises
..................................... 264
Contents xi
IV The Interplay of Geometry and Linear Algebra
271
11
Affine
Geometry and Convexity
273
11.1
Linear Subspaces
................................. 273
11.2
Examples of Linear Subspaces
......................... 274
11.3
Characterizations of Linear Subspaces
..................... 275
11.4
Affine
Combinations and
Affine
Sets
...................... 276
11.5
Affine
Sets and Linear Subspaces
........................ 277
11.6
Affine
Span of a Set
............................... 278
11.7
Affine
Independence
............................... 279
11.8
Affine
Bases and Barycentric Coordinates
................... 280
11.9
Characterizations of
Affine
Sets
........................ 281
11.10
Affine
Maps
................................... 282
11.11
Convex Sets
................................... 283
11.12
Convex Hulls
.................................. 284
11.13
Carathéodory s
Theorem
............................ 284
11.14 Hyperplanes
and Half-Spaces in Rn
...................... 286
11.15
Closed Convex Sets
............................... 287
11.16
Cones and Convex Cones
............................ 289
11.17
Intersection Lemma for V-Cones
....................... 290
11.18
All
Н
-Cones Are V-Cones
........................... 291
11.19
Projection Lemma for
Н
-Cones ........................
292
11.20
All V-Cones Are
Н
-Cones ...........................
293
11.21
Finite Intersections of Closed Half-Spaces
.................. 294
11.22
Convex Functions
................................ 296
11.23
Derivative Tests for Convex Functions
.................... 297
11.24
Summary
.................................... 298
11.25
Exercises
..................................... 301
12
Ruler and Compass Constructions
309
12.1
Geometric Constructibility
........................... 310
12.2
Arithmetic Constructibility
........................... 311
12.3
Preliminaries on Field Extensions
....................... 312
12.4
Field-Theoretic
Constructibüity
........................ 314
12.5
Proof that GC
ç
AC
.............................. 314
12.6
Proof that AC
Q GC
.............................. 316
12.7
Algebraic Elements and Minimal Polynomials
................ 320
12.8
Proof that AC
=
SQC
.............................. 322
12.9
Impossibility of Geometric Construction Problems
.............. 323
12.10
Constructibility of the 17-Gon
......................... 324
12.11
Overview of Solvability by Radicals
...................... 326
12.12
Summary
.................................... 327
12.13
Exercises
..................................... 328
13
Dual Spaces and Bilinear Forms
335
13.1
Vector Spaces of Linear Maps
......................... 335
13.2
Dual Bases
.................................... 336
13.3
Zero Sets
..................................... 337
13.4
Annihilators
................................... 338
13.5
Double Dual V**
................................ 339
13.6
Correspondence between Subspaces of V and V*
.........·...··... . 341
xii Contents
13.7
Dual Maps
.................................... 342
13.8
Nondegenerate
Bilinear Forms
......................... 344
13.9
Real Inner Product Spaces
........................... 345
13.10
Complex Inner Product Spaces
........................ 346
13.11
Comments on Infinite-Dimensional Spaces
.................. 348
13.12
Affine
Algebraic Geometry
........................... 349
13.13
Summary
.................................... 350
13.14
Exercises
..................................... 352
14
Metric Spaces and Hubert Spaces
359
14.1
Metric Spaces
.................................. 360
14.2
Convergent Sequences
.............................. 361
14.3
Closed Sets
.................................... 362
14.4
Open Sets
.................................... 363
14.5
Continuous Functions
.............................. 364
14.6
Compact Sets
.................................. 365
14.7
Completeness
................................... 366
14.8
Definition of a Hubert Space
.......................... 368
14.9
Examples of Hubert Spaces
........................... 369
14.10
Proof of the Hubert Space Axioms for £2 (X)
................. 371
14.11
Basic Properties of Hubert Spaces
....................... 373
14.12
Closed Convex Sets in Hubert Spaces
..................... 374
14.13
Orthogonal Complements
........................... 375
14.14
Orthonormal
Sets
................................ 377
14.15
Maximal
Orthonormal
Sets
.......................... 378
14.16
Isomorphism of
H
and ¿z(X)
......................... 379
14.17
Continuous Linear Maps
............................ 381
14.18
Dual Space of a Hubert Space
......................... 382
14.19
Adjoints
. . . ·.................................. 383
14.20
Summary
.................................... 384
14.21
Exercises
..................................... 387
V Modules, Independence, and Classification Theorems
395
15
Finitely Generated Commutative Groups
397
15.1
Commutative Groups
.............................. 397
15.2
Generating Sets
................................. 399
15.3
Z-Independence and Z-Bases
.......................... 400
15.4
Elementary Operations on Z-Bases
...................... 401
15.5
Coordinates and Z-Linear Maps
........................ 402
15.6
UMP for Free Commutative Groups
...................... 403
15.7
Quotient Groups of Free Commutative Groups
................ 404
15.8
Subgroups of Free Commutative Groups
................... 405
15.9
Z-Linear Maps, and Integer Matrices
...................... 406
15.10
Elementary Operations and Change of Basis
................. 408
15.11
Reduction Theorem for Integer Matrices
................... 411
15.12
Structure of Z-Linear Maps between Free Groups
.............. 413
15.13
Structure of Finitely Generated Commutative Groups
........... 414
15.14
Example of the Reduction Algorithm
..................... 415
15.15
Some Special Subgroups
............................ 417
15.16
Uniqueness Proof: Free Case
.......................... 418
Contents xiii
15.17
Uniqueness Proof: Prime Power Case
..................... 419
15.18
Uniqueness of Elementary Divisors
...................... 422
15.19
Uniqueness of Invariant Factors
........................ 423
15.20
Uniqueness Proof: General Case
........................ 424
15.21
Summary
.................................... 424
15.22
Exercises
..................................... 426
16
Axiomatic Approach to Independence, Bases, and Dimension
437
16.1
Axioms
...................................... 437
16.2
Definitions
.................................... 438
16.3
Initial Theorems
................................. 438
16.4
Consequences of the Exchange Axiom
..................... 439
16.5
Main Theorems: Finite-Dimensional Case
................... 440
16.6
Zorn s Lemma
.................................. 442
16.7
Main Theorems: General Case
......................... 443
16.8
Bases of Subspaces
............................... 446
16.9
Linear Independence and Linear Bases
.................... 446
16.10
Field Extensions
................................ 448
16.11
Algebraic Independence and Transcendence Bases
.............. 449
16.12
Independence in Graphs
............................ 452
16.13
Hereditary Systems
............................... 453
16.14
Matroids
..................................... 454
16.15
Equivalence of Matroid Axioms
........................ 455
16.16
Summary
.................................... 456
16.17
Exercises
..................................... 457
17
Elements of Module Theory
463
17.1
Module Axioms
................................. 463
17.2
Examples of Modules
.............................. 465
17.3
Submodules
................................... 466
17.4
Submodule
Generated by a Subset
....................... 467
17.5
Direct Products, Direct Sums, and
Hom
Modules
.............. 468
17.6
Quotient Modules
................................ 470
17.7
Changing the Ring of Scalars
.......................... 472
17.8
Fundamental Homomorphism Theorem for Modules
............. 472
17.9
More Module Homomorphism Theorems
................... 474
17.10
Chains of
Submodules
............................. 476
17.11
Modules of Finite Length
........................... 478
17.12
Free Modules
.................................. 479
17.13
Size of a Basis of a Free Module
........................ 481
17.14
Summary
.................................... 483
17.15
Exercises
..................................... 486
18
Principal Ideal Domains, Modules over PIDs, and Canonical
Fornas
493
18.1
Principal Ideal Domains
............................. 494
18.2
Divisibility in Commutative Rings
....................... 494
18.3
Divisibility and Ideals
.............................. 495
18.4
Prime and Irreducible Elements
........................ 496
18.5
Irreducible Factorizations in
РГОѕ
....................... 497
18.6
Free Modules over
a
PID............................ 498
18.7
Operations on Bases
............................... 499
xiv Contents
18.8
Matrices
of Lineax Maps between Free Modules
............... 500
18.9
Reduction Theorem for Matrices over
a
PID ................. 502
18.10
Structure Theorems for Linear Maps and Modules
............. 504
18.11
Minors and Matrix Invariants
......................... 505
18.12
Uniqueness of Smith Normal Form
...................... 506
18.13
Torsion
Submodules
.............................. 507
18.14
Uniqueness
ofinvariant
Factors
........................ 508
18.15
Uniqueness of Elementary Divisors
...................... 509
18.16
.Ffa^-Module Defined by a Linear Operator
.................. 510
18.17
Rational Canonical Form of a Linear Map
.................. 512
18.18
Jordan Canonical Form of a Linear Map
................... 513
18.19
Canonical Forms of Matrices
........................... 514
18.20
Summary
.................................... 516
18.21
Exercises
..................................... 518
VI Universal Mapping Properties and Multilinear Algebra
525
19
Introduction to Universal Mapping Properties
527
19.1
Bases of Free
Ä-Modules ............................ 529
19.2
Homomorphisms out of Quotient Modules
.................. 529
19.3
Direct Product of Two Modules
........................ 531
19.4
Direct Sum of Two Modules
.......................... 532
19.5
Direct Products of Arbitrary Families of
Ä-Modules............. 533
19.6
Direct Sums of Arbitrary Families of
iř-Modules
............... 534
19.7
Solving Universal Mapping Problems
..................... 537
19.8
Summary
..................................... 539
19.9
Exercises
..................................... 541
20
Universal Mapping Problems in Multilinear Algebra
547
20.1
Multilinear Maps
................................ 547
20.2
Alternating Maps
................................ 548
20.3
Symmetric Maps
................................. 549
20.4
Tensor Product of Modules
........................... 550
20.5
Exterior Powers of a Module
.......................... 553
20.6
Symmetric Powers of a Module
......................... 555
20.7
Myths about Tensor Products
......................... 557
20.8
Tensor Product Isomorphisms
.......................... 558
20.9
Associativity of Tensor Products
........................ 560
20.10
Tensor Product of Maps
............................ 561
20.11
Bases and Multilinear Maps
.......................... 562
20.12
Bases for Tensor Products of Free
Ä-Modules ................ 564
20.13
Bases and Alternating Maps
.......................... 565
20.14
Bases for Exterior Powers of Free Modules
.................. 566
20.15
Bases for Symmetric Powers of Free Modules
................ 567
20.16
Tensor Product of Matrices
.......................... 568
20.17
Determinants and Exterior Powers
...................... 569
20.18
From Modules to Algebras
........................... 571
20.19
Summary
.................................... 573
20.20
Exercises
..................................... 577
Contents xv
Appendix: Basic
Definitions
583
Sets........................................... 583
Functions
........................................ 583
Relations........................................
584
Partially Ordered Sets
................................. 585
Further Reading
587
Bibliography
591
Index
595
TEXTBOOKS in MATHEMATICS
Advanced Linear Algebra explores a variety of advanced topics in linear al¬
gebra that highlight the rich interconnections of the subject to geometry, alge¬
bra, analysis, combinatorics, numerical computation, and many other areas of
mathematics. The book s
20
chapters are grouped into six main subjects: al¬
gebraic structures, matrices, structured matrices, geometric aspects of linear
algebra, modules, and multilinear algebra. The level of abstraction gradually
increases as you proceed through the text, moving from matrices to vector
spaces to modules.
Each chapter consists of a mathematical vignette devoted to the development
of one specific topic. Some chapters look at introductory material from a so¬
phisticated or abstract viewpoint while others provide elementary expositions
of more theoretical concepts. Several chapters offer unusual perspectives or
novel treatments of standard results. Unlike similar advanced mathematical
texts, this one minimizes the dependence of each chapter on material found
in previous chapters so that you may immediately turn to the relevant chapter
without first wading through pages of earlier material to access the necessary
algebraic background and theorems.
Features
•
Focuses on theoretical aspects of linear algebra
•
Gives complete proofs of all results
•
Supplements the general theory with many specific examples and
concrete computations
•
Requires very little knowledge of abstract algebra beyond fields,
vector spaces over a field, subspaces, linear transformations, linear
independence, and bases
•
Includes a summary and exercise sets at the end of each chapter
|
any_adam_object | 1 |
author | Loehr, Nicholas A. |
author_GND | (DE-588)143771701 |
author_facet | Loehr, Nicholas A. |
author_role | aut |
author_sort | Loehr, Nicholas A. |
author_variant | n a l na nal |
building | Verbundindex |
bvnumber | BV042103764 |
classification_rvk | SK 220 |
ctrlnum | (OCoLC)889985557 (DE-599)BVBBV042103764 |
dewey-full | 512/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.5 |
dewey-search | 512/.5 |
dewey-sort | 3512 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01764nam a2200409 c 4500</leader><controlfield tag="001">BV042103764</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150216 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">141006s2014 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781466559011</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-1-4665-5901-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)889985557</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042103764</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Loehr, Nicholas A.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143771701</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced linear algebra</subfield><subfield code="c">Nicholas Loehr</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 609 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Textbooks in mathematics</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Chapman & Hall book</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebras, Linear</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027544332&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027544332&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027544332</subfield></datafield></record></collection> |
id | DE-604.BV042103764 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:12:47Z |
institution | BVB |
isbn | 9781466559011 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027544332 |
oclc_num | 889985557 |
open_access_boolean | |
owner | DE-703 DE-11 DE-824 DE-83 DE-634 |
owner_facet | DE-703 DE-11 DE-824 DE-83 DE-634 |
physical | XXII, 609 S. graph. Darst. |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | CRC Press |
record_format | marc |
series2 | Textbooks in mathematics A Chapman & Hall book |
spelling | Loehr, Nicholas A. Verfasser (DE-588)143771701 aut Advanced linear algebra Nicholas Loehr Boca Raton [u.a.] CRC Press 2014 XXII, 609 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Textbooks in mathematics A Chapman & Hall book Includes bibliographical references Algebras, Linear Lineare Algebra (DE-588)4035811-2 gnd rswk-swf Electronic books Lineare Algebra (DE-588)4035811-2 s DE-604 Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027544332&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027544332&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Loehr, Nicholas A. Advanced linear algebra Algebras, Linear Lineare Algebra (DE-588)4035811-2 gnd |
subject_GND | (DE-588)4035811-2 |
title | Advanced linear algebra |
title_auth | Advanced linear algebra |
title_exact_search | Advanced linear algebra |
title_full | Advanced linear algebra Nicholas Loehr |
title_fullStr | Advanced linear algebra Nicholas Loehr |
title_full_unstemmed | Advanced linear algebra Nicholas Loehr |
title_short | Advanced linear algebra |
title_sort | advanced linear algebra |
topic | Algebras, Linear Lineare Algebra (DE-588)4035811-2 gnd |
topic_facet | Algebras, Linear Lineare Algebra |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027544332&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027544332&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT loehrnicholasa advancedlinearalgebra |