Proofs from the book:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2014
|
Ausgabe: | 5. ed. |
Schlagworte: | |
Online-Zugang: | BTU01 FRO01 TUM01 UBA01 UBM01 UBT01 UBW01 UPA01 Volltext Inhaltsverzeichnis Abstract |
Beschreibung: | 1 Online-Ressource (VIII, 308 S.) Ill., graph. Darst. |
ISBN: | 9783662442043 9783662442050 |
DOI: | 10.1007/978-3-662-44205-0 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV042084192 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 140919s2014 |||| o||u| ||||||eng d | ||
020 | |a 9783662442043 |c : Gb. : EUR 48.14 (DE) |9 978-3-662-44204-3 | ||
020 | |a 9783662442050 |c Online |9 978-3-662-44205-0 | ||
024 | 7 | |a 10.1007/978-3-662-44205-0 |2 doi | |
035 | |a (OCoLC)890025670 | ||
035 | |a (DE-599)DNB1054754829 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91 |a DE-739 |a DE-20 |a DE-19 |a DE-634 |a DE-861 |a DE-384 |a DE-83 | ||
082 | 0 | |a 510 | |
084 | |a SG 590 |0 (DE-625)143069: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Aigner, Martin |d 1942-2023 |e Verfasser |0 (DE-588)13205387X |4 aut | |
245 | 1 | 0 | |a Proofs from the book |c Martin Aigner ; Günter M. Ziegler |
250 | |a 5. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2014 | |
300 | |a 1 Online-Ressource (VIII, 308 S.) |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Methode |0 (DE-588)4155620-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beweisführung |0 (DE-588)4227233-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beweis |0 (DE-588)4132532-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4144384-6 |a Beispielsammlung |2 gnd-content | |
689 | 0 | 0 | |a Beweis |0 (DE-588)4132532-1 |D s |
689 | 0 | 1 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 1 | 1 | |a Beweisführung |0 (DE-588)4227233-6 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
689 | 3 | 0 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 3 | |8 3\p |5 DE-604 | |
700 | 1 | |a Ziegler, Günter M. |d 1963- |e Verfasser |0 (DE-588)121062155 |4 aut | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-44205-0 |x Verlag |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027525201&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027525201&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-SMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-027525201 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-662-44205-0 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-44205-0 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-44205-0 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-44205-0 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-44205-0 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-44205-0 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-44205-0 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-44205-0 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804152537273597952 |
---|---|
adam_text | PROOFS FROM THE BOOK
/ AIGNER, MARTIN
: 2014
TABLE OF CONTENTS / INHALTSVERZEICHNIS
NUMBER THEORY: 1. SIX PROOFS OF THE INFINITY OF PRIMES
2. BERTRAND’S POSTULATE
3. BINOMIAL COEFFICIENTS ARE (ALMOST) NEVER POWERS
4. REPRESENTING NUMBERS AS SUMS OF TWO SQUARES
5. THE LAW OF QUADRATIC RECIPROCITY
6. EVERY FINITE DIVISION RING IS A FIELD
7. THE SPECTRAL THEOREM AND HADAMARD’S DETERMINANT PROBLEM
8. SOME IRRATIONAL NUMBERS
9. THREE TIMES Π2/6
GEOMETRY: 10. HILBERT’S THIRD PROBLEM: DECOMPOSING POLYHEDRAL
11. LINES IN THE PLANE AND DECOMPOSITIONS OF GRAPHS
12. THE SLOPE PROBLEM
13. THREE APPLICATIONS OF EULER’S FORMULA
14. CAUCHY’S RIGIDITY THEOREM
15. THE BORROMEAN RINGS DON’T EXIST
16. TOUCHING SIMPLICES
17. EVERY LARGE POINT SET HAS AN OBTUSE ANGLE
18. BORSUK’S CONJECTURE
ANALYSIS: 19. SETS, FUNCTIONS, AND THE CONTINUUM HYPOTHESIS
20. IN PRAISE OF INEQUALITIES
21. THE FUNDAMENTAL THEOREM OF ALGEBRA
22. ONE SQUARE AND AN ODD NUMBER OF TRIANGLES
23. A THEOREM OF POLYA ON POLYNOMIALS
24. ON A LEMMA OF LITTLEWOOD AND OFFORD
25. COTANGENT AND THE HERGLOTZ TRICK
26. BUFFON’S NEEDLE PROBLEM
COMBINATORICS: 27. PIGEON-HOLE AND DOUBLE COUNTING
28. TILING RECTANGLES
29. THREE FAMOUS THEOREMS ON FINITE SETS
30. SHUFFLING CARDS
31. LATTICE PATHS AND DETERMINANTS
32. CAYLEY’S FORMULA FOR THE NUMBER OF TREES
33. IDENTITIES VERSUS BIJECTIONS
34. THE FINITE KAKEYA PROBLEM
35. COMPLETING LATIN SQUARES
GRAPH THEORY: 36. THE DINITZ PROBLEM
37. PERMANENTS AND THE PO WER OF ENTROPY
38. FIVE-COLORING PLANE GRAPHS
39. HOW TO GUARD A MUSEUM
40. TURAN’S GRAPH THEOREM
41. COMMUNICATING WITHOUT ERRORS
42. THE CHROMATIC NUMBER OF KNESER GRAPHS
43. OF FRIENDS AND POLITICIANS
44. PROBABILITY MAKES COUNTING (SOMETIMES) EASY
ABOUT THE ILLUSTRATIONS
INDEX
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
PROOFS FROM THE BOOK
/ AIGNER, MARTIN
: 2014
ABSTRACT / INHALTSTEXT
THIS REVISED AND ENLARGED FIFTH EDITIONFEATURES FOUR NEW CHAPTERS,
WHICH CONTAIN HIGHLY ORIGINAL AND DELIGHTFUL PROOFS FOR CLASSICS SUCH AS
THE SPECTRAL THEOREM FROM LINEAR ALGEBRA, SOME MORE RECENT JEWELS LIKE
THE NON-EXISTENCE OF THE BORROMEAN RINGS AND OTHER SURPRISES. FROM THE
REVIEWS ... INSIDE PFTB (PROOFS FROM THE BOOK) IS INDEED A GLIMPSE OF
MATHEMATICAL HEAVEN, WHERE CLEVER INSIGHTS AND BEAUTIFUL IDEAS COMBINE
IN ASTONISHING AND GLORIOUS WAYS. THERE IS VAST WEALTH WITHIN ITS PAGES,
ONE GEM AFTER ANOTHER. ... AIGNER AND ZIEGLER... WRITE: ... ALL WE
OFFER IS THE EXAMPLES THAT WE HAVE SELECTED, HOPING THAT OUR READERS
WILL SHARE OUR ENTHUSIASM ABOUT BRILLIANT IDEAS, CLEVER INSIGHTS AND
WONDERFUL OBSERVATIONS. I DO. ... NOTICES OF THE AMS, AUGUST 1999
... THIS BOOK IS A PLEASURE TO HOLD AND TO LOOK AT: AMPLE MARGINS, NICE
PHOTOS, INSTRUCTIVE PICTURES, AND BEAUTIFUL DRAWINGS ... IT IS A
PLEASURE TO READ AS WELL: THE STYLE IS CLEAR AND ENTERTAINING, THE LEVEL
IS CLOSE TO ELEMENTARY, THE NECESSARY BACKGROUND IS GIVEN SEPARATELY,
AND THE PROOFS ARE BRILLIANT. ... LMS NEWSLETTER, JANUARY 1999 MARTIN
AIGNER AND GUENTER ZIEGLER SUCCEEDED ADMIRABLY IN PUTTING TOGETHER A
BROAD COLLECTION OF THEOREMS AND THEIR PROOFS THAT WOULD UNDOUBTEDLY BE
IN THE BOOK OF ERDOES. THE THEOREMS ARE SO FUNDAMENTAL, THEIR PROOFS SO
ELEGANT, AND THE REMAINING OPEN QUESTIONS SO INTRIGUING THAT EVERY MA
THEMATICIAN, REGARDLESS OF SPECIALITY, CAN BENEFIT FROM READING THIS
BOOK. ... SIGACT NEWS, DECEMBER 2011
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Aigner, Martin 1942-2023 Ziegler, Günter M. 1963- |
author_GND | (DE-588)13205387X (DE-588)121062155 |
author_facet | Aigner, Martin 1942-2023 Ziegler, Günter M. 1963- |
author_role | aut aut |
author_sort | Aigner, Martin 1942-2023 |
author_variant | m a ma g m z gm gmz |
building | Verbundindex |
bvnumber | BV042084192 |
classification_rvk | SG 590 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)890025670 (DE-599)DNB1054754829 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-44205-0 |
edition | 5. ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03589nmm a2200709 c 4500</leader><controlfield tag="001">BV042084192</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">140919s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662442043</subfield><subfield code="c">: Gb. : EUR 48.14 (DE)</subfield><subfield code="9">978-3-662-44204-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662442050</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-44205-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-44205-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)890025670</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1054754829</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SG 590</subfield><subfield code="0">(DE-625)143069:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aigner, Martin</subfield><subfield code="d">1942-2023</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13205387X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Proofs from the book</subfield><subfield code="c">Martin Aigner ; Günter M. Ziegler</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">5. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 308 S.)</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweisführung</subfield><subfield code="0">(DE-588)4227233-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4144384-6</subfield><subfield code="a">Beispielsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Beweisführung</subfield><subfield code="0">(DE-588)4227233-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ziegler, Günter M.</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121062155</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-44205-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027525201&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027525201&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027525201</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-44205-0</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-44205-0</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-44205-0</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-44205-0</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-44205-0</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-44205-0</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-44205-0</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-44205-0</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4144384-6 Beispielsammlung gnd-content |
genre_facet | Beispielsammlung |
id | DE-604.BV042084192 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:12:17Z |
institution | BVB |
isbn | 9783662442043 9783662442050 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027525201 |
oclc_num | 890025670 |
open_access_boolean | |
owner | DE-703 DE-91 DE-BY-TUM DE-739 DE-20 DE-19 DE-BY-UBM DE-634 DE-861 DE-384 DE-83 |
owner_facet | DE-703 DE-91 DE-BY-TUM DE-739 DE-20 DE-19 DE-BY-UBM DE-634 DE-861 DE-384 DE-83 |
physical | 1 Online-Ressource (VIII, 308 S.) Ill., graph. Darst. |
psigel | ZDB-2-SMA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Springer |
record_format | marc |
spelling | Aigner, Martin 1942-2023 Verfasser (DE-588)13205387X aut Proofs from the book Martin Aigner ; Günter M. Ziegler 5. ed. Berlin [u.a.] Springer 2014 1 Online-Ressource (VIII, 308 S.) Ill., graph. Darst. txt rdacontent c rdamedia cr rdacarrier Mathematik (DE-588)4037944-9 gnd rswk-swf Mathematische Methode (DE-588)4155620-3 gnd rswk-swf Beweisführung (DE-588)4227233-6 gnd rswk-swf Beweis (DE-588)4132532-1 gnd rswk-swf Mathematische Logik (DE-588)4037951-6 gnd rswk-swf (DE-588)4144384-6 Beispielsammlung gnd-content Beweis (DE-588)4132532-1 s Mathematik (DE-588)4037944-9 s DE-604 Beweisführung (DE-588)4227233-6 s 1\p DE-604 Mathematische Logik (DE-588)4037951-6 s 2\p DE-604 Mathematische Methode (DE-588)4155620-3 s 3\p DE-604 Ziegler, Günter M. 1963- Verfasser (DE-588)121062155 aut https://doi.org/10.1007/978-3-662-44205-0 Verlag Volltext Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027525201&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027525201&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Abstract 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Aigner, Martin 1942-2023 Ziegler, Günter M. 1963- Proofs from the book Mathematik (DE-588)4037944-9 gnd Mathematische Methode (DE-588)4155620-3 gnd Beweisführung (DE-588)4227233-6 gnd Beweis (DE-588)4132532-1 gnd Mathematische Logik (DE-588)4037951-6 gnd |
subject_GND | (DE-588)4037944-9 (DE-588)4155620-3 (DE-588)4227233-6 (DE-588)4132532-1 (DE-588)4037951-6 (DE-588)4144384-6 |
title | Proofs from the book |
title_auth | Proofs from the book |
title_exact_search | Proofs from the book |
title_full | Proofs from the book Martin Aigner ; Günter M. Ziegler |
title_fullStr | Proofs from the book Martin Aigner ; Günter M. Ziegler |
title_full_unstemmed | Proofs from the book Martin Aigner ; Günter M. Ziegler |
title_short | Proofs from the book |
title_sort | proofs from the book |
topic | Mathematik (DE-588)4037944-9 gnd Mathematische Methode (DE-588)4155620-3 gnd Beweisführung (DE-588)4227233-6 gnd Beweis (DE-588)4132532-1 gnd Mathematische Logik (DE-588)4037951-6 gnd |
topic_facet | Mathematik Mathematische Methode Beweisführung Beweis Mathematische Logik Beispielsammlung |
url | https://doi.org/10.1007/978-3-662-44205-0 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027525201&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027525201&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT aignermartin proofsfromthebook AT zieglergunterm proofsfromthebook |