Statistical methods in biology: design and analysis of experiments and regression
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Boca Raton, Fla.
CRC Press
2015
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XX, 582 S. graph. Darst. |
ISBN: | 9781439808788 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042074632 | ||
003 | DE-604 | ||
005 | 20150302 | ||
007 | t | ||
008 | 140915s2015 d||| |||| 00||| eng d | ||
020 | |a 9781439808788 |9 978-1-4398-0878-8 | ||
035 | |a (OCoLC)894786624 | ||
035 | |a (DE-599)BVBBV042074632 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-703 |a DE-29T | ||
082 | 0 | |a 570.15195 | |
084 | |a WC 7000 |0 (DE-625)148142: |2 rvk | ||
245 | 1 | 0 | |a Statistical methods in biology |b design and analysis of experiments and regression |c S. J. Welham ... |
264 | 1 | |a Boca Raton, Fla. |b CRC Press |c 2015 | |
300 | |a XX, 582 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Regressionsanalyse |0 (DE-588)4129903-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biostatistik |0 (DE-588)4729990-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biometrie |0 (DE-588)4124925-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
653 | |a Biometry | ||
653 | |a Regression analysis | ||
689 | 0 | 0 | |a Biometrie |0 (DE-588)4124925-2 |D s |
689 | 0 | 1 | |a Regressionsanalyse |0 (DE-588)4129903-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Biostatistik |0 (DE-588)4729990-3 |D s |
689 | 1 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Welham, Suzanne Jane |e Sonstige |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027515823&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027515823&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-027515823 |
Datensatz im Suchindex
_version_ | 1804152521431711744 |
---|---|
adam_text | Contents
Preface
.............................................................................................................................................xv
Authors
.........................................................................................................................................xix
1.
Introduction
.............................................................................................................................1
1.1
Different Types of Scientific Study
.............................................................................1
1.2
Relating Sample Results to More General Populations
...........................................3
1.3
Constructing Models to Represent Reality
...............................................................4
1.4
Using Linear Models
....................................................................................................7
1.5
Estimating the Parameters of Linear Models
...........................................................8
1.6
Summarizing the Importance of Model Terms
........................................................9
1.7
The Scope of This Book
..............................................................................................11
2.
A Review of Basic Statistics
...............................................................................................13
2.1
Summary Statistics and Notation for Sample Data
...............................................13
2.2
Statistical Distributions for Populations
..................................................................16
2.2.1
Discrete Data
..................................................................................................17
2.2.2
Continuous Data
............................................................................................22
2.2.3
The Normal Distribution
..............................................................................24
2.2.4
Distributions Derived from Functions of Normal Random Variables
.......26
2.3
From Sample Data to Conclusions about the Population
......................................28
2.3.1
Estimating Population Parameters Using Summary Statistics
...............28
2.3.2
Asking Questions about the Data: Hypothesis Testing
...........................29
2.4
Simple Tests for Population Means
..........................................................................30
2.4.1
Assessing the Mean Response: The One-Sample t-Test
...........................30
2.4.2
Comparing Mean Responses: The Two-Sample t-Test.
.............................32
2.5
Assessing the Association between Variables
........................................................36
2.6
Presenting Numerical
Resulte
...................................................................................39
Exercises
..................................................................................................................................41
3.
Principles for Designing Experiments
.............................................................................43
3.1
Key Principles
..............................................................................................................43
3.1.1
Replication
......................................................................................................46
3.1.2
Randomization
...............................................................................................48
3.1.3
Blocking
...........................................................................................................51
3.2
Forms of Experimental Structure
.............................................................................52
3.3
Common Forms of Design for Experiments
...........................................................57
3.3.1
The Completely Randomized Design
.........................................................57
3.3.2
The Randomized Complete Block Design
.................................................58
3.3.3
The Latin Square Design
..............................................................................59
3.3.4
The Split-Plot Design
.....................................................................................60
3.3.5
The Balanced Incomplete Block Design
.....................................................61
3.3.6
Generating a Randomized Design
..............................................................62
Exercises
..................................................................................................................................62
tříí
viii Contents
4. Models
for a Single Factor
..................................................................................................69
4.1
Defining the Model
.....................................................................................................69
4.2
Estimating the Model Parameters
............................................................................73
4.3
Summarizing the Importance of Model Terms
......................................................74
4.3.1
Calculating Sums of Squares
.......................................................................76
4.3.2
Calculating Degrees of Freedom and Mean Squares
...............................80
4.3.3
Calculating Variance Ratios as Test Statistics
............................................81
4.3.4
The Summary ANOVA Table
.......................................................................82
4.4
Evaluating the Response to Treatments
...................................................................84
4.4.1
Prediction of Treatment Means
....................................................................84
4.4.2
Comparison of Treatment Means
................................................................85
4.5
Alternative Forms of the Model
................................................................................88
Exercises
..................................................................................................................................90
5.
Checking Model Assumptions
..........................................................................................93
5.1
Estimating Deviations
................................................................................................93
5.1.1
Simple Residuals
............................................................................................94
5.1.2
Standardized Residuals
................................................................................95
5.2
Using Graphical Tools to Diagnose Problems
........................................................96
5.2.1
Assessing Homogeneity of Variances
.........................................................96
5.2.2
Assessing Independence
...............................................................................98
5.2.3
Assessing Normality
...................................................................................101
5.2.4
Using Permutation Tests Where Assumptions Fail
................................102
5.2.5
The Impact of Sample Size
..........................................................................103
5.3
Using Formal Tests to Diagnose Problems
............................................................104
5.4
Identifying Inconsistent Observations
..................................................................108
Exercises
................................................................................................................................110
6.
Transformations of the Response
...................................................................................113
6.1
Why Do We Need to Transform the Response?
...................................................113
6.2
Some Useful Transformations
.................................................................................114
6.2.1
Logarithms
....................................................................................................114
6.2.2
Square Roots
.................................................................................................119
6.2.3
Logits
.............................................................................................................120
6.2.4
Other Transformations
................................................................................121
6.3
Interpreting the Results after Transformation
......................................................122
6.4
Interpretation for Log-Transformed Responses
...................................................123
6.5
Other Approaches
.....................................................................................................126
Exercises
................................................................................................................................127
7.
Models with a Simple Blocking Structure
....................................................................129
7.1
Defining the Model
...................................................................................................130
7.2
Estimating the Model Parameters
..........................................................................132
7.3
Summarizing the Importance of Model Terms
....................................................134
7.4
Evaluating the Response to Treatments
.................................................................140
7.5
Incorporating Strata: The Multi-Stratum Analysis of Variance
.........................141
Exercises
................................................................................................................................146
Contents ix
8.
Extracting Information about Treatments
.....................................................................149
8.1
From Scientific Questions to the Treatment Structure
........................................150
8.2
A Crossed Treatment Structure with Two Factors
...............................................152
8.2.1
Models for a Crossed Treatment Structure with Two Factors
...............153
8.2.2
Estimating the Model Parameters
.............................................................155
8.2.3
Assessing the Importance of Individual Model Terms
..........................158
8.2.4
Evaluating the Response to Treatments: Predictions from the
Fitted Model
..................................................................................................160
8.2.5
The Advantages of Factorial Structure
.....................................................162
8.2.6
Understanding Different Parameterizations
...........................................163
8.3
Crossed Treatment Structures with Three or More Factors
...............................164
8.3.1
Assessing the Importance of Individual Model Terms
..........................166
8.3.2
Evaluating the Response to Treatments: Predictions from the
Fitted Model
.................................................................................................171
8.4
Models for Nested Treatment Structures
..............................................................173
8.5
Adding Controls or Standards to a Set of Treatments
.........................................179
8.6
Investigating Specific Treatment Comparisons
....................................................182
8.7
Modelling Patterns for Quantitative Treatments
.................................................190
8.8
Making Treatment Comparisons from Predicted Means
...................................195
8.8.1
The Bonferroni Correction
.........................................................................196
8.8.2
The False Discovery Rate
...........................................................................197
8.8.3
All Pairwise Comparisons
..........................................................................198
8.8.3.1
The LSD and Fisher s Protected LSD
.........................................198
8.8.3.2
Multiple Range Tests
....................................................................199
8.8.3.3
Tukey s Simultaneous Confidence Intervals
............................200
8.8.4
Comparison of Treatments against a Control
..........................................201
8.8.5
Evaluation of a Set of Pre-Planned Comparisons
...................................201
8.8.6
Summary of Issues
......................................................................................205
Exercises
................................................................................................................................206
9.
Models with More Complex Blocking Structure
.........................................................209
9.1
The Latin Square Design
..........................................................................................209
9.1.1
Defining the Model
......................................................................................211
9.1.2
Estimating the Model Parameters
.............................................................211
9.1.3
Assessing the Importance of Individual Model Terms
..........................212
9.1.4
Evaluating the Response to Treatments: Predictions from the
Fitted Model
..................................................................................................215
9.1.5
Constraints and Extensions of the Latin Square Design
.......................217
9.2
The Split-Plot Design
................................................................................................220
9.2.1
Defining the Model
......................................................................................222
9.2.2
Assessing the Importance of Individual Model Terms
..........................223
9.2.3
Evaluating the Response to Treatments: Predictions from the
Fitted Model
..................................................................................................225
9.2.4
Drawbacks and Variations of the Split-Plot Design
................................228
9.3
The Balanced Incomplete Block Design
.................................................................232
9.3.1
Defining the Model
......................................................................................235
9.3.2
Assessing the Importance of Individual Model Terms
..........................236
Contents
9.3.3
Drawbacks and Variations of the Balanced Incomplete Block Design
.....237
Exercises
................................................................................................................................238
10.
Replication and Power
.......................................................................................................241
10.1
Simple Methods for Determining Replication
......................................................242
10.1.1
Calculations Based on the LSD
..................................................................242
10.1.2
Calculations Based on the Coefficient of Variation
................................243
10.1.3
Unequal Replication and Models with Blocking
....................................244
10.2
Estimating the Background Variation
...................................................................245
10.3
Assessing the Power of a Design
............................................................................245
10.4
Constructing a Design for a Particular Experiment
............................................249
10.5
A Different Hypothesis: Testing for Equivalence
.................................................253
Exercise
..................................................................................................................................256
11.
Dealing with Non-Orthogonality
...................................................................................257
11.1
The Benefits of Orthogonality
.................................................................................257
11.2
Fitting Models with Non-Orthogonal Terms
........................................................259
11.2.1
Parameterizing Models for Two Non-Orthogonal Factors
....................259
11.2.2
Assessing the Importance of Non-Orthogonal Terms: The
Sequential ANOVA Table
...........................................................................265
11.2.3
Calculating the Impact of Model Terms
...................................................269
11.2.4
Selecting the Best Model
.............................................................................270
11.2.5
Evaluating the Response to Treatments: Predictions from the
Fitted Model
..................................................................................................270
11.3
Designs with Planned Non-Orthogonality
...........................................................272
11.3.1
Fractional Factorial Designs
.......................................................................273
11.3.2
Factorial Designs with Confounding
........................................................274
11.4
The Consequences of Missing Data
.......................................................................274
11.5
Incorporating the Effects of Unplanned Factors
..................................................277
11.6
Analysis Approaches for Non-Orthogonal Designs
............................................280
11.6.1
A Simple Approach: The Intra-Block Analysis
........................................281
Exercises
................................................................................................................................284
12.
Models for a Single
Variate:
Simple Linear Regression
.............................................287
12.1
Defining the Model
...................................................................................................288
12.2
Estimating the Model Parameters
..........................................................................292
12.3
Assessing the Importance of the Model
................................................................296
12.4
Properties of the Model Parameters
.......................................................................299
12.5
Using the Fitted Model to Predict Responses
.......................................................301
12.6
Summarizing the Fit of the Model
.........................................................................305
12.7
Consequences of Uncertainty in the Explanatory
Variate
..................................306
12.8
Using Replication to Test Goodness of Fit
.............................................................308
12.9
Variations on the Model
...........................................................................................313
12.9.1
Centering and Scaling the Explanatory
Variate
......................................313
12.9.2
Regression through the Origin
..................................................................314
12.9.3
Calibration
....................................................................................................320
Exercises
................................................................................................................................321
Contents xi
13.
Checking
Model
Fit
............................................................................................................325
13.1
Checking the Form of the
Model............................................................................325
13.2
More Ways of Estimating Deviations
....................................................................328
13.3
Using Graphical Tools to Check Assumptions
.....................................................330
13.4
Looking for Influential Observations
....................................................................332
13.4.1
Measuring Potential Influence: Leverage
.................................................333
13.4.2
The Relationship between Residuals and Leverages
.............................335
13.4.3
Measuring the Actual Influence of Individual Observations
...............336
13.5
Assessing the Predictive Ability of a Model: Cross-Validation
..........................338
Exercises
................................................................................................................................342
14.
Models for Several
Variâtes:
Multiple Linear Regression
.........................................345
14.1
Visualizing Relationships between
Variâtes
.........................................................345
14.2
Defining the Model
...................................................................................................347
14.3
Estimating the Model Parameters
..........................................................................350
14.4
Assessing the Importance of Individual Explanatory
Variâtes
.........................352
14.4.1
Adding Terms into the Model: Sequential ANOVA and
Incremental Sums of Squares
.....................................................................353
14.4.2
The Impact of Removing Model Terms: Marginal Sums of Squares
... 356
14.5
Properties of the Model Parameters and Predicting Responses
........................358
14.6
Investigating Model Misspecification
....................................................................359
14.7
Dealing with Correlation among Explanatory
Variâtes
......................................361
14.8
Summarizing the Fit of the Model
.........................................................................365
14.9
Selecting the Best Model
..........................................................................................366
14.9.1
Strategies for Sequential Variable Selection
.............................................369
14.9.2
Problems with Procedures for the Selection of Subsets of Variables
........376
14.9.3
Using Cross-Validation as a Tool for Model Selection
............................377
14.9.4
Some Final Remarks on Procedures for Selecting Models
....................378
Exercises
................................................................................................................................378
15.
Models for
Variâtes
and Factors
......................................................................................381
15.1
Incorporating Groups into the Simple Linear Regression Model
......................382
15.1.1
An Overview of Possible Models
..............................................................383
15.1.2
Defining and Choosing between the Models
..........................................388
15.1.2.1
Single Line Model
........................................................................388
15.1.2.2
Parallel Lines Model
....................................................................388
15.1.2.3
Separate Lines Model
..................................................................390
15.1.2.4
Choosing between the Models: The Sequential
ANOVA Table
................................................................................391
15.1.3
An Alternative Sequence of Models
..........................................................396
15.1.4
Constraining the Intercepts
........................................................................398
15.2
Incorporating Groups into the Multiple Linear Regression Model
...................399
15.3
Regression in Designed Experiments
....................................................................406
15.4
Analysis of Covariance: A Special Case of Regression with Groups
................409
15.5
Complex Models with Factors and
Variâtes
..........................................................414
15.5.1
Selecting the Predictive Model
..................................................................414
15.5.2
Evaluating the Response: Predictions from the Fitted Model
...............417
xii Contents
15.6
The Connection between Factors and
Variâtes
....................................................417
15.6.1
Rewriting the Model in Matrix Notation
.................................................421
Exercises
................................................................................................................................423
16.
Incorporating Structure: Linear Mixed Models
...........................................................427
16.1
Incorporating Structure
...........................................................................................427
16.2
An Introduction to Linear Mixed Models
.............................................................428
16.3
Selecting the Best Fixed Model
...............................................................................430
16.4
Interpreting the Random Model
.............................................................................432
16.4.1
The Connection between the Linear Mixed Model and Multi-
Stratum ANOVA
..........................................................................................434
16.5
What about Random Effects?
..................................................................................435
16.6
Predicting Responses
...............................................................................................436
16.7
Checking Model Fit
...................................................................................................437
16.8
An Example
................................................................................................................438
16.9
Some Pitfalls and Dangers
.......................................................................................444
16.10
Extending the Model
................................................................................................445
Exercises
................................................................................................................................447
17.
Models for Curved Relationships
...................................................................................451
17.1
Fitting Curved Functions by Transformation
.......................................................451
17.1.1
Simple Transformations of an Explanatory
Variate
................................451
17.1.2
Polynomial Models
......................................................................................456
17.1.3
Trigonometric Models for Periodic Patterns
............................................460
17.2
Curved Surfaces as Functions of Two or More
Variâtes
......................................463
17.3
Fitting Models Including Non-linear Parameters
...............................................472
Exercises
................................................................................................................................476
18.
Models for Non-Normal Responses: Generalized Linear Models
...........................479
18.1
Introduction to Generalized Linear Models
.........................................................480
18.2
Analysis of Proportions Based on Counts: Binomial Responses
.......................481
18.2.1
Understanding and Defining the Model
..................................................483
18.2.2
Assessing the Importance of the Model and Individual Terms:
The Analysis of Deviance
...........................................................................487
18.2.2.1
Interpreting the ANODEV with No Over-Dispersion
............489
18.2.2.2
Interpreting the ANODEV with Over-Dispersion
..................490
18.2.2.3
The Sequential ANODEV Table
.................................................493
18.2.3
Checking the Model Fit and Assumptions
..............................................494
18.2.4
Properties of the Model Parameters
..........................................................4%
18.2.5
Evaluating the Response to Explanatory Variables: Prediction
............498
18.2.6
Aggregating Binomial Responses
.............................................................500
18.2.7
The Special Case of Binary Data
................................................................501
18.2.8
Other Issues with Binomial Responses
....................................................501
18.3
Analysis of Count Data:
Poisson
Responses
.........................................................502
18.3.1
Understanding and Defining the Model
..................................................503
18.3.2
Analysis of the Model
.................................................................................506
183.3
Analysing
Poisson
Responses with Several Explanatory Variables
.....509
18.3.4
Other Issues with
Poisson
Responses
.......................................................512
Contents xiii
18.4
Other Types of GLM and Extensions
.....................................................................512
Exercises
................................................................................................................................513
19.
Practical Design and Data Analysis for Real Studies
.................................................517
19.1
Designing Real Studies
............................................................................................518
19.1.1
Aims, Objectives and Choice of Explanatory Structure
........................518
19.1.2
Resources, Experimental Units and Constraints
....................................519
19.1.3
Matching the Treatments to the Resources
..............................................520
19.1.4
Designs for Series of Studies and for Studies with Multiple Phases.
... 521
19.1.5
Design Case Studies
....................................................................................523
19.2
Choosing the Best Analysis Approach
..................................................................535
19.2.1
Analysis of Designed Experiments
...........................................................536
19.2.2
Analysis of Observational Studies
............................................................537
19.2.3
Different Types of Data
...............................................................................538
19.3
Presentation of Statistics in Reports, Theses and Papers
....................................538
19.3.1
Statistical Information in the Materials and Methods
...........................539
19.3.2
Presentation of Results
................................................................................540
19.4
And Finally.
..............................................................................................................543
References
...................................................................................................................................545
Appendix A: Data Tables
.........................................................................................................551
Appendix B: Quantiles of Statistical Distributions
...........................................................559
Appendix C: Statistical and Mathematical Results
............................................................563
Index
.............................................................................................................................................569
Statistics
Written in simple language with relevant examples, Statistical Methods in
Biology: Design and Analysis of Experiments and Regression is a practi¬
cal and illustrative guide to the design of experiments and data analysis in the
biological and agricultural sciences. The book presents statistical ideas in the
context to which they are being applied, drawing on relevant examples from the
authors experience.
Taking a practical and intuitive approach, the book includes mathematical for¬
mulae only where this helps to formalise and explain the methods being applied,
providing extended discussions of examples based on real data sets arising from
scientific research. The authors analyse data in detail to illustrate the use of basic
formulae for simple examples white using statistical packages for more complex
examples. The associated website (www.stats4bio!.info) shows how to obtain
the example analyses in the
GenStať
.
R
and SAS; statistical packages. This on¬
line material provides a basic introduction to the facilities in each package, with
code for all of the examples and half of the exercises in each chapter.
By the time you reach the end of the book and online material you wiil have
gained:
•
A clear appreciation of the importance of a statistical approach to the
design of your experiments.
•
A sound understanding of the statistical methods used to analyse data
obtained from designed experiments, and of the regression approaches
used to construct simple models to describe the observed response as a
function of explanatory variables,
•
Knowledge of how to use statistical packages to analyse data with the
approaches described, and most importantly.
•
An appreciation of how to interpret the results of these statistical analyses
in the context of the biological or agricultural science within which you are
working.
The book concludes with a practical guide to design and data analysis. Overall,
it gives you the statistical understanding required to successfully identify and ap¬
ply these statistical methods to add value to your scientific research.
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV042074632 |
classification_rvk | WC 7000 |
ctrlnum | (OCoLC)894786624 (DE-599)BVBBV042074632 |
dewey-full | 570.15195 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 570 - Biology |
dewey-raw | 570.15195 |
dewey-search | 570.15195 |
dewey-sort | 3570.15195 |
dewey-tens | 570 - Biology |
discipline | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01974nam a2200445 c 4500</leader><controlfield tag="001">BV042074632</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150302 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140915s2015 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439808788</subfield><subfield code="9">978-1-4398-0878-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)894786624</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042074632</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570.15195</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 7000</subfield><subfield code="0">(DE-625)148142:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical methods in biology</subfield><subfield code="b">design and analysis of experiments and regression</subfield><subfield code="c">S. J. Welham ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla.</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 582 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biostatistik</subfield><subfield code="0">(DE-588)4729990-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biometrie</subfield><subfield code="0">(DE-588)4124925-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biometry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Regression analysis</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biometrie</subfield><subfield code="0">(DE-588)4124925-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Biostatistik</subfield><subfield code="0">(DE-588)4729990-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Welham, Suzanne Jane</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027515823&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027515823&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027515823</subfield></datafield></record></collection> |
id | DE-604.BV042074632 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:12:02Z |
institution | BVB |
isbn | 9781439808788 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027515823 |
oclc_num | 894786624 |
open_access_boolean | |
owner | DE-11 DE-703 DE-29T |
owner_facet | DE-11 DE-703 DE-29T |
physical | XX, 582 S. graph. Darst. |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | CRC Press |
record_format | marc |
spelling | Statistical methods in biology design and analysis of experiments and regression S. J. Welham ... Boca Raton, Fla. CRC Press 2015 XX, 582 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Regressionsanalyse (DE-588)4129903-6 gnd rswk-swf Biostatistik (DE-588)4729990-3 gnd rswk-swf Biometrie (DE-588)4124925-2 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Biometry Regression analysis Biometrie (DE-588)4124925-2 s Regressionsanalyse (DE-588)4129903-6 s DE-604 Biostatistik (DE-588)4729990-3 s Datenanalyse (DE-588)4123037-1 s Welham, Suzanne Jane Sonstige oth Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027515823&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027515823&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Statistical methods in biology design and analysis of experiments and regression Regressionsanalyse (DE-588)4129903-6 gnd Biostatistik (DE-588)4729990-3 gnd Biometrie (DE-588)4124925-2 gnd Datenanalyse (DE-588)4123037-1 gnd |
subject_GND | (DE-588)4129903-6 (DE-588)4729990-3 (DE-588)4124925-2 (DE-588)4123037-1 |
title | Statistical methods in biology design and analysis of experiments and regression |
title_auth | Statistical methods in biology design and analysis of experiments and regression |
title_exact_search | Statistical methods in biology design and analysis of experiments and regression |
title_full | Statistical methods in biology design and analysis of experiments and regression S. J. Welham ... |
title_fullStr | Statistical methods in biology design and analysis of experiments and regression S. J. Welham ... |
title_full_unstemmed | Statistical methods in biology design and analysis of experiments and regression S. J. Welham ... |
title_short | Statistical methods in biology |
title_sort | statistical methods in biology design and analysis of experiments and regression |
title_sub | design and analysis of experiments and regression |
topic | Regressionsanalyse (DE-588)4129903-6 gnd Biostatistik (DE-588)4729990-3 gnd Biometrie (DE-588)4124925-2 gnd Datenanalyse (DE-588)4123037-1 gnd |
topic_facet | Regressionsanalyse Biostatistik Biometrie Datenanalyse |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027515823&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027515823&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT welhamsuzannejane statisticalmethodsinbiologydesignandanalysisofexperimentsandregression |