Symmetry and physical properties of crystals: [selected by Grenoble Sciences]
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht [u.a.]
Springer
2014
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XXV, 522 S. Ill., graph. Darst. |
ISBN: | 9401789924 9789401789929 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042027545 | ||
003 | DE-604 | ||
005 | 20150120 | ||
007 | t | ||
008 | 140818s2014 ad|| |||| 00||| eng d | ||
015 | |a GBB481920 |2 dnb | ||
020 | |a 9401789924 |9 94-017-8992-4 | ||
020 | |a 9789401789929 |9 978-94-017-8992-9 | ||
035 | |a (OCoLC)900413431 | ||
035 | |a (DE-599)BVBBV042027545 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-355 |a DE-29T |a DE-384 | ||
084 | |a UQ 1300 |0 (DE-625)146478: |2 rvk | ||
100 | 1 | |a Malgrange, Cécile |e Verfasser |0 (DE-588)1065197322 |4 aut | |
240 | 1 | 0 | |a Symétrie et propriétés physiques des cristaux |
245 | 1 | 0 | |a Symmetry and physical properties of crystals |b [selected by Grenoble Sciences] |c Cécile Malgrange ; Christian Ricolleau ; Michel Schlenker |
264 | 1 | |a Dordrecht [u.a.] |b Springer |c 2014 | |
300 | |a XXV, 522 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Kristallphysik |0 (DE-588)4165768-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kristallphysik |0 (DE-588)4165768-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ricolleau, Christian |e Verfasser |0 (DE-588)1065199368 |4 aut | |
700 | 1 | |a Schlenker, Michel |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-94-017-8993-6 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027469058&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027469058&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-027469058 |
Datensatz im Suchindex
_version_ | 1804152449020198912 |
---|---|
adam_text | Contents
Chapter
1
Introduction
1
1.1.
Crystal order
..................................................................... 1
1.2.
Order on a macroscopic scale
................................................ 3
1.3.
Order on a microscopic scale
................................................ 4
1.4.
Basic assumptions of geometrical crystallography
..................... 6
1.5.
Amsotropy of physical properties
.......................................... 6
1.6.
Remarks on the scope of this book
:
topics left out
................... 7
Complement
1С.
Crystal growth
.................................................... 8
ICI.
Natural growth of single crystals
................................. 8
1С.2.
Crystal growth for scientific purposes
........................... 8
1C.3. Industrial crystal growth
........................................... 9
1С.4.
Growth of single-crystal thin films
............................... 10
Further reading
.................................................................. 10
References
................................................................................. 11
Chapter
2 —
Symmetry operations
13
2.1.
Isometries
......................................................................... 13
2.2.
Symmetry operations. Symmetry elements
.............................. 14
2.2.1.
ті-
fold rotations and axes
............................................ 14
2.2.2.
η
-fold
rotoinversions
and
η
-fold
rotoinversion
axes,
denoted as
ñ-fold
axes
............................................... 15
2.2.3.
Translations
............................................................ 16
2.2.4.
Screw axes and glide mirrors
...................................... 17
2.2.5.
Note
...................................................................... 18
2.3.
Introduction to symmetry groups
.......................................... 18
2.4.
Exercises
.......................................................................... 20
Chapter
3 -
Crystal lattices
23
3.1.
Direct lattice
..................................................................... 23
3.1.1.
Unit cell, row
.......................................................... 23
3.1.2.
Lattice planes
....................................-.................... 28
XVI
Symmetry and Physical Properties of Crystals
3.1.3.
Wigner-Seitz ceil
...................................................... 32
3.2.
Reciprocal lattice
............................................................... 32
3.2.1.
Introduction based on diffraction
................................ 32
3.2.2.
Alternative definition of the reciprocal lattice
................ 34
3.2.3.
Properties of the reciprocal lattice
............................... 35
3.2.4.
CrystallographAc calculations
...................................... 37
3.3.
Properties of crystal lattices
................................................. 40
3.3.1.
Centers of symmetry
................................................ 40
3.3.2.
τι-
fold and
ñ-fold
axes consistent with the crystalline state
40
3.3.3.
The direct lattice and the reciprocal lattice have
the same symmetry elements
...................................... 41
3.3.4.
Geometrical relation between the symmetry axes
and the crystal lattice
............................................... 42
3.3.5.
The lattice is at least as symmetrical as the crystal
........ 43
3.4.
Crystal systems
................................................................. 43
3.4.1.
Two-dimensional crystal systems
................................. 43
3.4.2.
Three-dimensional crystal systems
............................... 44
3.5.
Examples of reciprocal lattices
.............................................. 47
3.5.1.
Mono clinic lattice
.................................................... 47
3.5.2.
Orthorhornbic, tetragonal and cubic lattices
.................. 47
3.6.
Hexagonal lattice and rhombohedral lattice
............................. 48
3.6.1.
Hexagonal lattice
..................................................... 48
3.6.2.
Rhombohedral lattice
............................................... 48
3.7.
Bravais
lattices
.................................................................. 50
3.7.1.
Why they are needed
................................................ 50
3.7.2.
The fourteen
Bravais
lattices
....................................... 52
3.7.3.
Reciprocal lattices of the non-primitive lattices
.............. 53
3.8.
Surface crystal lattice
......................................................... 54
3.8.1.
Cut surface
............................................................. 55
3.8.2.
Real surface
............................................................ 55
3.8.3.
Notations
................................................................ 56
3.8.4.
Reciprocal lattice
.................................................... - 58
3.9.
Exercises
.......................................................................... 59
Appendix
ЗА.
The metric tensor
................................................... 63
3A.1. Definition
............................................................... 63
ЗА.
2.
Volume of the unit cell
.............................................. 63
3A.3. Product of the matrices associated to the direct
and reciprocal metric tensors
___................................. 64
ЗА.
4.
Calculation of lattice distances
................................... 65
ЗА.
5.
Applications
............................................................ 65
Contents______________________________ XVI
I
Chapter
4 —
Relationship between space groups
and point groups
67
4.1.
Introduction
...................................................................... 67
4.2.
Symmetry operations of the crystal
....................................... 70
4.2.1.
Change in origin
...................................................... 70
4.2.2.
The operations (S, t) form a group
.............................. 71
4.2.3.
The lattice translations form an invariant subgroup
of the group of symmetry operations of the crystal
......... 72
4.3.
Space groups and point groups
............................................. 73
4.4.
Exercises
.......................................................................... 75
Complement 4C. Probes used for crystal structure determination
......... 76
4C
. 1.
Possible probes and criteria for choice
.......................... 76
4C.2. X-rays
.................................................................... 76
4C.3. Neutrons
................................................................ 78
4C.4. Electrons
................................................................ 79
Further reading
.................................................................. 79
Appendix 4A. General features of groups
........................................ 80
Chapter
5
Point groups
83
5.1.
Introduction
...................................................................... 83
5.2. Stereographic
projection
...................................................... 84
5.2.1.
Definition
............................................................... 84
5.2.2.
Examples
............................................................... 86
5.2.3.
Application to
rotoinversion
axes or
ñ-fold
axes
............. 88
5.2.4.
Family of equivalent directions
................................... 89
5.3.
Improper groups
................................................................ 89
5.3.1.
Preliminary remark
.................................................. 89
5.3.2.
Properties of improper groups
.................................... 90
5.4.
Enumeration of the proper point groups
................................. 91
5.4.1.
Preamble
................................................................ 91
5.4.2.
Groups containing only the symmetry operations
associated to an axis An (cyclic groups)
....................... 92
5.4.3.
Groups containing the symmetry operations associated
to an axis An and to a perpendicular axis A2,
or dihedral groups
.................................................... 92
5.4.4.
Cubic proper groups
................................................. 93
5.5.
Enumeration of the improper point groups
.............................. 94
5.5.1.
Improper groups containing inversion
........................... 94
55.2.
Improper groups which do not feature inversion
............. 97
5.6.
Classification of the point groups
.......................................... 101
XVIII
Symmetry and Physical Properties of Crystals
5.7. Laue
classes
...................................................................... 106
5.8.
Plane point groups
............................................................. 107
5.9.
Isotropy point groups
.......................................................... 107
5.10.
Exercises
.......................................................................... 109
Appendix 5A. Complements on the
ster e o
graphic projection
...............
Ill
öA.l. Stereogxaphic
projection of the transform of a given
direction through the symmetry operations associated
to various symmetry elements
....................................
Ill
5
A.
2-
Ster
eographie projections of the symmetry elements
of a cube
................................................................ 112
Chapter
6 —
Bravais
lattices
117
6.1.
Introduction
...................................................................... 117
6.2.
Plane lattices
.................................................................... 118
6.2.1.
Group
1 ................................................................. 118
6.2.2.
Group
3 ................................................................. 118
6.2.3.
Group
4 ................................................................. 119
6.2.4.
Group
m
................................................................ 119
6.2.5.
Conclusion
.............................................................. 120
6.3.
S-dimensional
lattices
.......................................................... 120
6.3.1.
Group
1 ................................................................. 120
6.3.2.
Group
2................................................................. 120
6.3.3.
Group
3 ................................................................. 122
6.3.4.
Group
4 ................................................................. 124
6.3.5.
Group
222 .............................................................. 126
6.3.6.
Group
23 ................................................................ 127
Chapter
7 —
Space groups
129
7.1.
Introduction
...................................................................... 129
7.2.
Enumeration of the operations (S, t)
...................................... 130
7.2.1.
S
is a rotation. Definition of screw axes
........................ 131
7.2.2.
S
is
a rotoinversion,
noted
Š.
Definition of glide mirrors
.. 134
7.2.3.
Product of a symmetry operation and a translation
........ 136
7.3.
Enumeration of space groups
................................................ 139
7.3.1-
Symmorphic space groups
.......................................... 139
7.3.2.
Non-symmorphic space groups
.................................... 142
7.3.3.
International Tables for Crystallography
....................... 146
74.
Nomenclature
.................................................................... 149
7.5.
Examples: space groups of some structures
............................. 151
7.5.1.
TiCb-type
structure
(rutile)
....................................... 151
Contents ________________
XIX
7.5.2. Metals
with close-packed hexagonal structure
................ 152
7.5.3.
Structure of diamond
................................................ 154
7.6.
Exercises
.......................................................................... 155
Complement 7C. Structure determination: outline
............................ 158
Further reading
.................................................................. 161
References
................................................................................. 1
G2
Chapter
8 —
Chemical bonds and crystal structures
163
8.1.
Introduction
...................................................................... 163
8.2.
Ionic bonds
....................................................................... 165
8.2.1.
Nature and properties
............................................... 165
8.2.2.
Bonding energy
....................................................... 168
8.2.3.
Ionic structures with formula AX
................................ 169
8.2.4.
Other cubic structures
.............................................. 171
8.3.
Covalent bonds
.................................................................. 173
8.3.1.
Nature of covalent bonds
........................................... 173
8.3.2.
Basic property
......................................................... 171
8.3.3.
Examples
............................................................... 171
8.3.4.
Conclusion
..............................................................
17f>
8.4.
Van
der Waals
bonds, or
molecular
bonds
............................... 177
8.4.1.
Nature and properties
............................................... 177
8.4.2.
Example
................................................................ 177
8.5.
Metallic bonds
................................................................... 178
8.5.1.
Nature and properties
............................................... 178
8.5.2.
Examples
............................................................... 178
8.6.
Remarks and conclusions
..................................................... 180
8.7.
Exercises
.......................................................................... 181
Complement 8C. Magnetic structures
............................................. 183
Further reading
.................................................................. 185
References
......................................................................-.......... 186
Chapter
9 -
Crystal anisotropy and tensors
187
9.1.
Introduction
...................................................................... 387
9.2. Anisotropie
continuous medium
—......................................· - 188
9.3.
Representing a physical quantity by a tensor
........................... 189
9.3.1.
Example: electrical conductivity
................................. 189
9.3.2.
A refresher on
orthonormal
frame changes
.................... 191
9.3.3.
Application to electrical conductivity
........................... 193
9.4.
Tensors
............................................................................ 194
9.4.1.
Definition of a tensor
................................................ 194
XX Symmetry and Physical Properties of Crystals
9.4.2.
An important property
............................................. 195
9.4.3.
Field tensors and material tensors
............................... 196
9.5.
Symmetry properties of tensors
............................................. 197
9.5.1.
Internal symmetry. Symmetric and antisymmetric tensors
197
9.5.2.
External symmetry of material tensors.
Curie s and Neumann s principles
................................ 197
9.6.
Reduction in the number of independent coefficients
of a material tensor
............................................................ 200
9.6.1.
Method using the transformation matrix
...................... 200
9.6.2.
Direct inspection method
........................................ 201
9.6.3.
Special case: central symmetry (inversion symmetry)
...... 202
9.7.
Exercises
.......................................................................... 203
References
................................................................................. 204
Chapter
10 —
Second-rank tensors
205
10.1.
Introduction
...................................................................... 205
10.1.1.
Symmetric and antisymmetric tensors
.......................... 205
10.1.2.
Matrix form of second-rank tensors
............................. 206
10.1.3.
Trace
..................................................................... 206
10.2.
Representative quadric for a symmetric rank-2 tensor
............... 207
10.2.1.
Characteristic surface
............................................... 207
10.2.2.
Principal axes and principal coefficients
........................ 207
10.2.3.
Shape of the quadric
................................................. 209
10.3.
Properties of the quadric
..................................................... 210
10.3.1.
Normal to the quadric
.............................................. 210
10.3.2.
Length and physical meaning of the radius vector
.......... 211
10.3.3.
Intensity of a physical property in a given direction
........ 211
10.4-
Geometrical determination of the principal axes and principal
coefficients: the Mohr circle construction
................................ 213
10.5.
Effect of crystal symmetry
................................................... 215
10.5.1.
Triciinic system
....................................................... 216
10.5.2.
Monoclinic system
.................................................... 216
10.5.3-
Orthorhombic system
............-.................................. 216
10.5.4.
Uniaxial
systems: rhombohedral, trigonal and hexagonal
. 217
10.5.5.
Cubic system
.......................................................... 217
10.6.
Axial vectors, or antisymmetric rank-2 tensors
......................... 218
10.6.1.
Polar vectors, axial vectors
........................................ 218
10.6.2.
Example of an axial vector: the cross product
............... 220
10.7.
Exercises
.......................................................................... 222
Contents
XXI
Chapter
11 —
The stress tensor
225
11.1.
Introduction
...................................................................... 225
11.2.
Stress tensor
..................................................................... 225
11.2.1.
Introduction
........................................................... 225
11.2.2.
Definition of the stress tensor
..................................... 227
11.2.3.
Normal stress and shear stress
.................................... 229
11.3.
Basic relation
.................................................................... 230
11.4.
Symmetry of the stress tensor
............................................... 233
11.5.
Examples of stress tensors
................................................... 234
11.5.1.
Uniaxial
stress
......................................................... 234
11.5.2.
Pure shear
.............................................................. 235
11.5.3.
Hydrostatic pressure
................................................. 235
11.6.
Effect of gravity
................................................................. 236
11.7.
Exercises
.......................................................................... 238
References
................................................................................. 240
Chapter
12
—Deformation of a solid. The strain tensor
241
12.1.
Distortion tensor (displacement gradient tensor)
...................... 241
12.1.1.
Definition
............................................................... 241
12.1.2.
Physical meaning of components
c¡}
............................ 243
12.2.
Decomposition of the distortion tensor
into a rotation and a strain
.................................................. 244
12.2.1.
Introduction using a simple example
............................ 244
12.2.2.
Expressing the distortion associated to small rotations
__ 245
12.2.3.
Strain tensor
........................................................... 246
12.3.
Elongation in a given direction
............................................. 247
12.4.
Volume expansion (volumetric strain)
.................................... 248
12.5.
Special cases of strain
......................................................... 249
12.5.1.
Simple elongation
.................................................... 249
12.5.2.
Pure shear strain
..................................................... 249
12.5.3.
Simple shear strain
................................................... 250
12.6.
Thermal expansion
............................................................. 250
12.7.
Exercises
.......................................................................... 254
Chapter
13
-Elasticity
259
13.1.
Introduction
...................................................................... 259
13.2.
Compliance and stiffness tensors
........................................... 262
13.2.1.
Generalized Hooke s law
............................................ 262
13.2.2.
Symmetry of the compliance and stiffness tensors
........... 263
XXII
Symmetry and Physical Properties of Crystals
13.3.
Contracted notation (Voigt s notation)
................................... 264
13.3.1.
Stress tensor
........................................................... 264
13.3.2.
Strain tensor
........................................................... 265
13.3.3.
Compliance tensor and stiffness tensor
......................... 265
13.3.4.
Relation between the compliance and stiffness tensors
..... 268
13.4.
Energy of a strained solid
.................................................... 268
13.5.
Effect of crystal symmetry on the form of the elastic tensor
........ 271
13.5.1.
Center of symmetry
.................................................. 274
13.5.2.
Groups
2,
m
and 2/m
............................................... 274
13.5.3.
Groups
222,
mmm aad mm2
...................................... 274
13.5.4.
Groups
422,
4mm and 4/mmm
.................................. 275
13.5.5.
Cubic system
.......................................................... 276
13.6.
Isotropie
materials
.............................................................. 276
13.6.1.
Expressing components
saß
as a function of
E
and z/
...... 278
13.6.2.
Stiffness components.
Lamé
coefficients
........................ 279
13.7.
Representative surface for Young s modulus
............................ 279
13.8.
Compressibility
.................................................................. 281
13.8.1.
Bulk compressibility
................................................. 281
13.8.2.
Linear compressibility of a bar
.................................... 282
13.9.
Notes on non-uniform stresses and strains
............................... 283.
13.10.
Exercises
.......................................................................... 285
Complement 13C. Plastic deformation and crystal defects
.................. 288
Further reading
.................................................................. 290
References
................................................................................. 291
Chapter
14 —
Elastic waves in crystals
293
14.1.
Introduction
....................................................................... 293
14.2.
Plane elastic waves
........................................................,__ 294
14.3.
Application to a cubic crystal
............................................... 297
14.3.1.
Propagation of a plane wave along direction
[100] ........... 298
14.3.2.
Propagation along direction
[110] ................................ 299
14.4.
Isotropie
solid case
............................................................. 300
14.5.
Microscopic approach
-
Crystal lattice dynamics
.................___ 301
14.5.1.
Linear chain of identical atoms
................................... 301
14.5.2.
Linear chain with two different atoms
.......................... 305
14.5.3.
Extension to the real crystal case
................................ 308
14-6.
Exercises
.............................................................................. 309
Contents__________________________________________ ________
XXIII
Chapter
15
Crystal thermodynamics. Piezoelectricity
311
15.1.
Crystal thermodynamics
...................................................... 312
15.1.1.
Conjugate variables
.................................................. 312
15.1-2-
Independent variables
............................................... 314
15.1.3.
Principal effects vs crossed effects
............................... 317
15.1.4.
Summary of the various effects
................................... 318
15.1.5.
Condensed representation of the physical property matrix
320
15.2.
Pyroelectricity. Pyroelectric crystals
...................................... 321
15.3.
Piezoelectric crystals
........................................................... 322
15.3.1.
Direct effect and inverse effect
.................................... 322
15.3.2.
Piezoelectric tensor [d] and its two-subscript notation
..... 323
15.3.3.
Effect of crystal symmetry on the form of the tensor
....... 324
15.3.4.
Longitudinal piezoelectricity surface
............................ 328
15.3.5.
Other forms of piezoelectric coefficients
........................ 329
15.3.6.
Applications
........................................................... 331
15.4.
Principal and crossed effects under various conditions
............... 332
15.5.
Exercises
.......................................................................... 334
Complement 15C. Electrostriction and magnetostriction
.................... 337
Further reading
.................................................................. 338
References
................................................................................. 339
Chapter
16
Light propagation in crystals
341
16.1.
Maxwell s equations
............................................................ 341
16.2.
Light propagation in an
isotropie
material
.............................. 342
16.3.
Sinusoidal waves that are solutions of Maxwell s equations
......... 343
16.4.
Plane monochromatic wave in an anisotropic material
............... 345
16.4.1.
Basic equation
......................................................... 345
16.4.2.
Birefringence
........................................................... 346
16.4.3.
Index surface
.......................................................... 347
16.4.4.
Index ellipsoid
......................................................... 349
16.4.5.
Determining the induction vectors
............................... 350
16.4.6.
Direction of energy propagation
.................................. 353
16.5.
Refraction of a plane wave at the boundary between two materials
354
16-51.
The wave-vectors follow the Snell-Descartes law
............. 354
16.5-2.
Application to
uniaxial
materials
................................ 357
16.6.
Conclusion
........................................................................ 358
16.7.
Exercises
.......................................................................... 360
XXIV
Symmetry and Physical Properties of Crystals
Appendix 16A. Wave surface (or ray surface) and Huygens construction
364
16A.1
.
Wave surface
(от тау
surface)
.................................... 364
16A.2. Huygens construction
............................................. 367
Chapter
17
—Polarization of light by crystals
369
17.1.
Polarization state of an electromagnetic wave
.......................... 369
17.1.1.
Linearly polarized wave
............................................. 370
17.1.2.
Circularly polarized wave
.......................................... 370
17.1.3.
Elliptically polarized wave
......................................... 372
17.1.4.
Natural light
........................................................... 372
17.2.
Jones notation
................................................................... 373
17.3.
Linear polarizers
................................................................ 374
17.4.
Phase-shifting plates
........................................................... 376
17.4.1.
Half-wave plates
...................................................... 377
17.4.2.
Quarter-wave plates
................................................. 378
17.5.
Partially polarized waves and Stokes parameters
...................... 379
17.6.
Exercises
.......................................................................... 382
References
................................................................................. 384
Chapter
18
—Rotatory power and optical activity
385
18.1. Definition
of the rotatory power of a material
.......................... 385
18.2.
Fresnel s interpretation
........................................................ 386
18.3.
Interpretation of rotatory power through the influence
of the local environment
...................................................... 388
18.3.1.
Effect of spatial dispersion
......................................... 388
18.3.2.
Wave propagation in optically active crystals
................ 390
18.4.
Effect of crystal symmetry on the gyrotropy tensor
.................-- 393
18.4.1.
Centrosymmetric groups
............................................ 393
18.4.2.
Non-centrosymmetric groups
...................................... 394
18.5.
Rotatory power and chirality
................................................. 396
18.6.
Absorption and conclusion
................................................... 400
Complement 18C. Magnetic optical rotation
.....-.............................. 401
Further reading
.................................................................. 402
Appendix 18A. Axial tensors, or pseudo-tensors
............................... 403
ΙδΑ.Ι.
Definition of axial tensors, or
pseudo-
tensors
................. 403
18A.2. Levi-Civita tensor, or permutation tensor
..............-....... 403
18A-3- The gyrotropy tensor [O] is a rank-2 axial tensor
............ 404
18A.4. Relation between tensors [G] and
[β]
............................ 405
References
................................................................................. 406
Contents_______________________________________________________
XXV
Chapter
19 -
Electro-optical and elasto-optical effects
407
19.1.
Introduction
...................................................................... 407
19.2.
Electro-optical effects
.......................................................... 408
19.2.1.
Linear electro-optical effect,
от
Pockels
effect
................. 408
19.2.2.
Applications of the linear electro-
opti
cal
effect
............... 415
19.2.3.
Quadratic electro-optical effect, or Kerr effect
................ 420
19.3.
Elasto-optical effects
........................................................... 424
19.3.1-
Definition
............................................................... 424
19.3.2.
Application to the acousto-optical effects
...................... 427
19.4.
Exercises
.......................................................................... 430
Complement 19C. Frequency doubling, or Second Harmonic Generation
433
Further reading
.................................................................. 434
Chapter
20 —
Solutions to the exercises
435
20.1.
Exercises for Chapter
2 ....................................................... 435
20.2.
Exercises for Chapter
3 ....................................................... 436
20.3.
Exercises for Chapter
4 ....................................................... 444
20.4.
Exercises for Chapter
5 ....................................................... 445
20.5.
Exercises for Chapter
7 ....................................................... 450
20.6.
Exercises for Chapter
8 ....................................................... 456
20.7.
Exercises for Chapter
9 ....................................................... 458
20.8.
Exercises for Chapter
10 ...................................................... 459
20.9.
Exercises for Chapter
11 ...................................................... 461
20.10.
Exercises for Chapter
12 ...................................................... 463
20.11.
Exercises for Chapter
13 ...................................................... 470
20.12.
Exercises for Chapter
14 ...................................................... 475
20.13.
Exercises for Chapter
15 ...................................................... 479
20.14.
Exercises for Chapter
16 ...................................................... 487
20.15.
Exercises for Chapter
17 ...................................................... 492
20.16.
Exercises for Chapter
19 ...................................................... 499
General references
507
Index
511
Field Theory of
Non-Equilibrium Systems
The physics of non-equilibrium many-body systems is one of the most rapidly
expanding areas of theoretical physics. Traditionally used in the study of Laser
physics and superconducting kinetics, these techniques have more recently
found applications in the study of dynamics of cold atomic gases, mesoscopic,
and nano-mechanicalsystems.
The book gives a self-contained presentation of the modern functional
approach to non-equilibrium field-theoretical methods. They are applied
to examples ranging from biophysics to the kinetics of superfluids and
superconductors. Its step-by-step treatment gives particular emphasis to
the pedagogical aspects, making it ideal as a reference for advanced graduate
students and researchers in condensed matter physics.
ALEX KAM
EN
EV
is
a
Professorin
the WilLiam I. FineTheoreticaL Physics Institute
(FTPI) and in the Department of Physics, University of Minnesota. Sincegaining
his Ph.D. at the Weizmann Instituteof Sciencein
1996,
he has held a postdoctoral
position atthe University of California at Santa Barbara and the Assistant
Professorship at the Israellnstitute of Technology (Technion).
|
any_adam_object | 1 |
author | Malgrange, Cécile Ricolleau, Christian Schlenker, Michel |
author_GND | (DE-588)1065197322 (DE-588)1065199368 |
author_facet | Malgrange, Cécile Ricolleau, Christian Schlenker, Michel |
author_role | aut aut aut |
author_sort | Malgrange, Cécile |
author_variant | c m cm c r cr m s ms |
building | Verbundindex |
bvnumber | BV042027545 |
classification_rvk | UQ 1300 |
ctrlnum | (OCoLC)900413431 (DE-599)BVBBV042027545 |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01933nam a2200397 c 4500</leader><controlfield tag="001">BV042027545</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150120 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140818s2014 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB481920</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9401789924</subfield><subfield code="9">94-017-8992-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401789929</subfield><subfield code="9">978-94-017-8992-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)900413431</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042027545</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 1300</subfield><subfield code="0">(DE-625)146478:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Malgrange, Cécile</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1065197322</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Symétrie et propriétés physiques des cristaux</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symmetry and physical properties of crystals</subfield><subfield code="b">[selected by Grenoble Sciences]</subfield><subfield code="c">Cécile Malgrange ; Christian Ricolleau ; Michel Schlenker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 522 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kristallphysik</subfield><subfield code="0">(DE-588)4165768-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kristallphysik</subfield><subfield code="0">(DE-588)4165768-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ricolleau, Christian</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1065199368</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schlenker, Michel</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-94-017-8993-6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027469058&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027469058&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027469058</subfield></datafield></record></collection> |
id | DE-604.BV042027545 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:10:53Z |
institution | BVB |
isbn | 9401789924 9789401789929 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027469058 |
oclc_num | 900413431 |
open_access_boolean | |
owner | DE-20 DE-355 DE-BY-UBR DE-29T DE-384 |
owner_facet | DE-20 DE-355 DE-BY-UBR DE-29T DE-384 |
physical | XXV, 522 S. Ill., graph. Darst. |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Springer |
record_format | marc |
spelling | Malgrange, Cécile Verfasser (DE-588)1065197322 aut Symétrie et propriétés physiques des cristaux Symmetry and physical properties of crystals [selected by Grenoble Sciences] Cécile Malgrange ; Christian Ricolleau ; Michel Schlenker Dordrecht [u.a.] Springer 2014 XXV, 522 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Kristallphysik (DE-588)4165768-8 gnd rswk-swf Kristallphysik (DE-588)4165768-8 s DE-604 Ricolleau, Christian Verfasser (DE-588)1065199368 aut Schlenker, Michel Verfasser aut Erscheint auch als Online-Ausgabe 978-94-017-8993-6 Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027469058&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027469058&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Malgrange, Cécile Ricolleau, Christian Schlenker, Michel Symmetry and physical properties of crystals [selected by Grenoble Sciences] Kristallphysik (DE-588)4165768-8 gnd |
subject_GND | (DE-588)4165768-8 |
title | Symmetry and physical properties of crystals [selected by Grenoble Sciences] |
title_alt | Symétrie et propriétés physiques des cristaux |
title_auth | Symmetry and physical properties of crystals [selected by Grenoble Sciences] |
title_exact_search | Symmetry and physical properties of crystals [selected by Grenoble Sciences] |
title_full | Symmetry and physical properties of crystals [selected by Grenoble Sciences] Cécile Malgrange ; Christian Ricolleau ; Michel Schlenker |
title_fullStr | Symmetry and physical properties of crystals [selected by Grenoble Sciences] Cécile Malgrange ; Christian Ricolleau ; Michel Schlenker |
title_full_unstemmed | Symmetry and physical properties of crystals [selected by Grenoble Sciences] Cécile Malgrange ; Christian Ricolleau ; Michel Schlenker |
title_short | Symmetry and physical properties of crystals |
title_sort | symmetry and physical properties of crystals selected by grenoble sciences |
title_sub | [selected by Grenoble Sciences] |
topic | Kristallphysik (DE-588)4165768-8 gnd |
topic_facet | Kristallphysik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027469058&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027469058&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT malgrangececile symetrieetproprietesphysiquesdescristaux AT ricolleauchristian symetrieetproprietesphysiquesdescristaux AT schlenkermichel symetrieetproprietesphysiquesdescristaux AT malgrangececile symmetryandphysicalpropertiesofcrystalsselectedbygrenoblesciences AT ricolleauchristian symmetryandphysicalpropertiesofcrystalsselectedbygrenoblesciences AT schlenkermichel symmetryandphysicalpropertiesofcrystalsselectedbygrenoblesciences |