Introduction to econometrics:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston, Harlow [u.a.]
Pearson
2015
|
Ausgabe: | Updated 3. ed., global ed. |
Schriftenreihe: | The Pearson series in economics
Always learning |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 811 - 815 |
Beschreibung: | 836 S. graph. Darst. |
ISBN: | 9781292071312 1292071311 9780133486872 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042017068 | ||
003 | DE-604 | ||
005 | 20160524 | ||
007 | t | ||
008 | 140808s2015 d||| |||| 00||| eng d | ||
020 | |a 9781292071312 |9 978-1-292-07131-2 | ||
020 | |a 1292071311 |9 1-292-07131-1 | ||
020 | |a 9780133486872 |9 978-0-13-348687-2 | ||
035 | |a (OCoLC)896354881 | ||
035 | |a (DE-599)BVBBV042017068 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-739 |a DE-573 |a DE-634 |a DE-19 |a DE-188 |a DE-1050 |a DE-355 |a DE-M382 |a DE-1043 |a DE-11 |a DE-945 |a DE-1049 |a DE-92 |a DE-384 |a DE-521 |a DE-1047 |a DE-706 |a DE-29 | ||
084 | |a QH 300 |0 (DE-625)141566: |2 rvk | ||
084 | |a QH 310 |0 (DE-625)141567: |2 rvk | ||
084 | |a SK 980 |0 (DE-625)143277: |2 rvk | ||
084 | |a WIR 017f |2 stub | ||
100 | 1 | |a Stock, James H. |e Verfasser |0 (DE-588)12457131X |4 aut | |
245 | 1 | 0 | |a Introduction to econometrics |c James H. Stock ; Mark W. Watson |
246 | 1 | 3 | |a Econometrics |
250 | |a Updated 3. ed., global ed. | ||
264 | 1 | |a Boston, Harlow [u.a.] |b Pearson |c 2015 | |
300 | |a 836 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a The Pearson series in economics | |
490 | 0 | |a Always learning | |
500 | |a Literaturverz. S. 811 - 815 | ||
650 | 0 | 7 | |a Ökonometrie |0 (DE-588)4132280-0 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Ökonometrie |0 (DE-588)4132280-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Watson, Mark W. |d 1952- |e Verfasser |0 (DE-588)124571344 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027458833&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-027458833 |
Datensatz im Suchindex
_version_ | 1804152432748396544 |
---|---|
adam_text | Contents
Preface
31
PART ONE Introduction and Review
CHAPTER
1
Economic Questions and Data
47
1.1
Economic Questions We Examine
47
Question
#1 :
Does Reducing Class Size Improve Elementary School Education?
Question
#2:
Is There Racial Discrimination in the Market for Home Loans?
Question
#3:
How Much Do Cigarette Taxes Reduce Smoking?
49
Question
#4:
By How Much Will U.S. GDP Grow Next Year?
50
Quantitative Questions, Quantitative Answers
51
1.2
Causal Effects and Idealized Experiments
51
Estimation of Causal Effects
52
Forecasting and Causality
53
1.3
Data: Sources and Types
53
Experimental Versus Observational Data
53
Cross-Sectional Data
54
Time Series Data
55
Panel Data
57
48
49
CHAPTER
2
2.1
2.2
2.3
Review of Probability
60
Random Variables and Probability Distributions
61
Probabilities, the Sample Space, and Random Variables
61
Probability Distribution of a Discrete Random Variable
62
Probability Distribution of a Continuous Random Variable
65
Expected Values, Mean, and Variance
65
The Expected Value of a Random Variable
65
The Standard Deviation and Variance
67
Mean and Variance of a Linear Function of a Random Variable
Other Measures of the Shape of a Distribution
69
Two Random Variables
72
Joint and Marginal Distributions
72
68
10 Contents
Conditional Distributions
73
Independence
77
Covariance and Correlation
77
The Mean and Variance of Sums of Random Variables
78
2.4
The Normal, Chi-Squared, Student
ŕ,
and
F
Distributions
82
The Normal Distribution
82
The Chi-Squared Distribution
87
The Student
f
Distribution
87
The
F
Distribution
88
2.5
Random Sampling and the Distribution of the Sample Average
89
Random Sampling
89
The Sampling Distribution of the Sample Average
90
2.6
Large-Sample Approximations to Sampling Distributions
93
The Law of Large Numbers and Consistency
94
The Central Limit Theorem
96
APPENDIX
2.1
Derivation of Results in Key Concept
2.3 109
CHAPTER
з
Review of Statistics
1
Ί Ί
3.1
Estimation of the Population Mean
112
Estimators and Their Properties
112
Properties of
Ϋ
114
The Importance of Random Sampling
11
б
3.2
Hypothesis Tests Concerning the Population Mean
117
Null and Alternative Hypotheses
117
Thep-Value
118
Calculating the p-Value When
σγ
Is Known
119
The Sample Variance, Sample Standard Deviation, and Standard Error
120
Calculating the p-Value When
σγ
Is Unknown
122
The f-Statistic
122
Hypothesis Testing with a Prespecified Significance Level
123
One-Sided Alternatives
125
3.3
Confidence Intervals for the Population Mean
126
3.4
Comparing Means from Different Populations
128
Hypothesis Tests for the Difference Between Two Means
128
Confidence Intervals for the Difference Between Two Population Means
130
Contents
11
3.5 Differences-of-Means
Estimation
of
Causal
Effects Using
Experimental Data
130
The Causal Effect as a Difference of Conditional Expectations
131
Estimation of the Causal Effect Using Differences of Means
131
3.6
Using the f-Statistic When the Sample Size Is Small
133
The f-Statistic and the Student
t
Distribution
133
Use of the Student
f
Distribution in Practice
135
3.7
Scatterplots, the Sample Covariance, and the Sample
Correlation
137
Scatterplots
137
Sample Covariance and Correlation
138
APPENDIX
3.1
The U.S. Current Population Survey
152
APPENDIX
3.2
Two Proofs That
ľ
Is the Least Squares Estimator of
μγ
153
APPENDIX
3.3
A Proof That the Sample Variance Is Consistent
154
PART TWO Fundamentals of Regression Analysis
CHAPTER
4
4.1
4.2
4.3
4.4
Linear Regression with One Regressor
155
The Linear Regression Model
155
Estimating the Coefficients of the Linear Regression
Model
160
The Ordinary Least Squares Estimator
162
OLS Estimates of the Relationship Between Test Scores and the Student-
Teacher Ratio
164
Why Use the OLS Estimator?
165
Measures of Fit
167
The/?2
167
The Standard Error of the Regression
168
Application to the Test Score Data
169
The Least Squares Assumptions
170
Assumption
#1 :
The Conditional Distribution of
u¡
Given
X¡
Has a Mean of Zero
170
Assumption
#2:
{X¡, Y¡), i
= 1
,.
..,
η,
Are Independently and Identically
Distributed
172
Assumption
#3:
Large Outliers Are Unlikely
173
Use of the Least Squares Assumptions
174
12 Contents
4.5
Sampling
Distribution
of the OLS Estimators
175
The Sampling Distribution of the OLS Estimators
176
4.6
Conclusion
179
APPENDIX
4.1
The California Test Score Data Set
187
APPENDIX
4.2
Derivation of the OLS Estimators
187
APPENDIX
43
Sampling Distribution of the OLS Estimator
188
CHAPTER
5
Regression with a Single Regressor: Hypothesis Tests and
Confidence Intervals
192
5.1
Testing Hypotheses About One of the Regression
Coefficients
192
Two-Sided Hypotheses Concerning
βλ
193
One-Sided Hypotheses Concerning
βλ
196
Testing Hypotheses About the Intercept
β0
1 98
5.2
Confidence Intervals for a Regression Coefficient
199
5.3
Regression When
λ
Is a Binary Variable
201
Interpretation of the Regression Coefficients
201
5.4
Heteroskedasticity and Homoskedasticity
203
What Are Heteroskedasticity and Homoskedasticity?
204
Mathematical Implications of Homoskedasticity
206
What Does This Mean in Practice?
207
5.5
The Theoretical Foundations of Ordinary Least Squares
209
Linear Conditionally Unbiased Estimators and the Gauss-Markov
Theorem
210
Regression Estimators Other Than OLS
211
5.6
Using the f-Statistic in Regression When the Sample Size
Is Small
212
The f-Statistic and the Student
f
Distribution
212
Use of the Student
f
Distribution in Practice
213
5.7
Conclusion
214
APPENDIX
5.1
Formulas for OLS Standard Errors
223
APPENDIX
5.2
The Gauss-Markov Conditions and a Proof of the
Gauss-Markov Theorem
224
Contents 13
CHAPTER
6
Linear Regression with Multiple Regressors
228
6.1
Omitted Variable Bias
228
Definition of Omitted Variable Bias
229
A Formula for Omitted Variable Bias
231
Addressing Omitted Variable Bias by Dividing the Data into
Groups
233
6.2
The Multiple Regression Model
235
The Population Regression Line
235
The Population Multiple Regression Model
236
6.3
The OLS Estimator in Multiple Regression
238
The OLS Estimator
239
Application to Test Scores and the Student-Teacher Ratio
240
6.4
Measures of Fit in Multiple Regression
242
The Standard Error of the Regression
[SER)
242
The R2
242
The Adjusted R2
243
Application to Test Scores
244
6.5
The Least Squares Assumptions in Multiple
Regression
245
Assumption
#1:
The Conditional Distribution of
u¡
Given
ХџХц,
...,
XtóHasa
Mean of Zero
245
Assumption
#2:
{Xv, X2I,
....
Х^ Ц,
> = 1,...,
n, Are i.i.d.
245
Assumption
#3:
Large Outliers Are Unlikely
245
Assumption
#4:
No Perfect Multicollinearity
246
6.6
The Distribution of the OLS Estimators in Multiple
Regression
247
6.7
Multicollinearity
248
Examples of Perfect Multicollinearity
249
Imperfect Multicollinearity
251
6.8
Conclusion
252
APPENDIX
6.1
Derivation of Equation
(6.1 ) 260
APPENDIX
6.2
Distribution of the OLS Estimators When There Are Two
Regressors and Homoskedastic Errors
260
APPENDIX
6.3
The Frisch-Waugh Theorem
261
14
Contents
CHAPTER
7
7.1
7.2
7.3
7.4
7.5
7.6
IJ
CHAPTERS
8.1
8.2
Hypothesis Tests and Confidence Intervals in Multiple
Regression
263
Hypothesis Tests and Confidence Intervals for a Single Coefficient
263
Standard Errors for the OLS Estimators
263
Hypothesis Tests for a Single Coefficient
264
Confidence Intervals for a Single Coefficient
265
Application to Test Scores and the Student-Teacher Ratio
266
Tests of Joint Hypotheses
268
Testing Hypotheses on Two or More Coefficients
268
The F-Statistic
270
Application to Test Scores and the Student-Teacher Ratio
272
The Homoskedasticity-Only F-Statistic
273
Testing Single Restrictions Involving Multiple Coefficients
275
Confidence Sets for Multiple Coefficients
277
Model Specification for Multiple Regression
278
Omitted Variable Bias in Multiple Regression
279
The Role of Control Variables in Multiple Regression
280
Mode! Specification in Theory and in Practice
282
Interpreting the R2 and the Adjusted R2 in Practice
283
Analysis of the Test Score Data Set
284
Conclusion
289
APPENDIX
7.1
The Bonferroni Test of a Joint Hypothesis
297
APPENDIX
7.2
Conditional Mean Independence
299
Nonlinear Regression Functions
302
A General Strategy for Modeling Nonlinear Regression Functions
304
Test Scores and District Income
304
The Effect on
Y
of a Change in X in Nonlinear Specifications
307
A General Approach to Modeling Nonlinearities Using Multiple Regression
312
Nonlinear Functions of a Single Independent Variable
312
Polynomials
313
Logarithms
315
Polynomial and Logarithmic Models of Test Scores and District Income
323
Contents 15
8.3
Interactions
Between
Independent
Variables 324
Interactions Between Two Binary Variables
325
Interactions Between a Continuous and a Binary Variable
328
Interactions Between Two Continuous Variables
332
8.4
Nonlinear Effects on Test Scores of the Student-Teacher Ratio
339
Discussion of Regression Results
339
Summary of Findings
343
8.5
Conclusion
344
APPENDIX
8.1
Regression Functions That Are Nonlinear in the
Parameters
355
APPENDIX
8.2
Slopes and Elasticities for Nonlinear Regression
Functions
359
CHAPTER
9
Assessing Studies Based on Multiple Regression
361
9.1
Internal and External Validity
361
Threats to Internal Validity
362
Threats to External Validity
363
9.2
Threats to Internal Validity of Multiple Regression Analysis
365
Omitted Variable Bias
365
Misspecification of the Functional Form of the Regression Function
367
Measurement Error and Errors-in-Variables Bias
368
Missing Data and Sample Selection
371
Simultaneous Causality
372
Sources of Inconsistency of OLS Standard Errors
375
9.3
Internal and External Validity When the Regression Is Used for
Forecasting
377
Using Regression Models for Forecasting
377
Assessing the Validity of Regression Models for Forecasting
378
9.4
Example: Test Scores and Class Size
378
External Validity
378
Internal Validity
385
Discussion and Implications
387
9.5
Conclusion
388
APPENDIX
9.1
The Massachusetts Elementary School Testing Data
395
16 Contents
PART THREE Further Topics in Regression Analysis
__________________
CHAPTER
10
Regression with Panel Data
396
10.1
Panel Data
397
Example: Traffic Deaths and Alcohol Taxes
398
10.2
Panel Data with Two Time Periods: Before and After
Comparisons
400
10.3
Fixed Effects Regression
403
The Fixed Effects Regression Model
403
Estimation and Inference
405
Application to Traffic Deaths
407
10.4
Regression with Time Fixed Effects
407
Time Effects Only
408
Both Entity and Time Fixed Effects
409
10.5
The Fixed Effects Regression Assumptions and Standard Errors for
Fixed Effects Regression
411
The Fixed Effects Regression Assumptions
411
Standard Errors for Fixed Effects Regression
413
10.6
Drunk Driving Laws and Traffic Deaths
414
10.7
Conclusion
418
APPENDIX
10.1
The State Traffic Fatality Data Set
426
APPENDIX
10.2
Standard Errors for Fixed Effects Regression
426
CHAPTER
11
Regression with a Binary Dependent Variable
431
11.1
Binary Dependent Variables and the Linear Probability Model
432
Binary Dependent Variables
432
The Linear Probability Model
434
11.2
Probit
and Logit Regression
437
Probit
Regression
437
Logit Regression
442
Comparing the Linear Probability,
Probit,
and Logit Models
444
11.3
Estimation and Inference in the Logit and
Probit
Models
444
Nonlinear Least Squares Estimation
445
Contents 17
Maximum
Likelihood Estimation
446
Measures of Fit
447
1 1
A Application to the Boston HMDA Data
448
11.5
Conclusion
455
APPENDIX
11.1
The Boston HMDA Data Set
464
APPENDIX
11.2
Maximum Likelihood Estimation
464
APPENDIX
11.3
Other Limited Dependent Variable Models
467
CHAPTER
1
2
Instrumental Variables Regression
470
12.1
The IV Estimator with a Single Regressor and a Single
Instrument
471
The IV Model and Assumptions
471
The Two Stage Least Squares Estimator
472
Why Does IV Regression Work?
473
The Sampling Distribution of the TSLS Estimator
477
Application to the Demand for Cigarettes
479
12.2
The General IV Regression Model
481
TSLS in the General IV Model
483
Instrument Relevance and Exogeneity in the General IV Model
484
The IV Regression Assumptions and Sampling Distribution of the
TSLS Estimator
485
Inference Using the TSLS Estimator
486
Application to the Demand for Cigarettes
487
12.3
Checking Instrument Validity
488
Assumption
#1 :
Instrument Relevance
489
Assumption
#2:
Instrument Exogeneity
491
12.4
Application to the Demand for Cigarettes
494
12.5
Where Do Valid Instruments Come From?
499
Three Examples
500
12.6
Conclusion
504
APPENDIX
12.1
The Cigarette Consumption Panel Data Set
513
APPENDIX
12.2
Derivation of the Formula for the TSLS Estimator in
Equation
(12.4) 513
18
Contents
APPENDIX
12.3
Large-Sample Distribution of theTSLS Estimator
514
APPENDIX
12.4
Large-Sample Distribution of theTSLS Estimator When
the Instrument Is Not Valid
515
APPENDIX
12.5
Instrumental Variables Analysis with Weak
Instruments
517
APPENDIX
12.6
TSLS with Control Variables
519
CHAPTER
із
Experiments and Quasi-Experiments
521
13.1
Potential Outcomes, Causal Effects, and Idealized
Experiments
522
Potential Outcomes and the Average Causal Effect
522
Econometric Methods for Analyzing Experimental Data
524
13.2
Threats to Validity of Experiments
525
Threats to Internal Validity
525
Threats to External Validity
529
13.3
Experimental Estimates of the Effect of Class Size
Reductions
530
Experimental Design
531
Analysis of the STAR Data
532
Comparison of the Observational and Experimental Estimates of Class Size
Effects
537
13.4
Quasi-Experiments
539
Examples
540
The Differences-in-Differences Estimator
542
Instrumental Variables Estimators
545
Regression Discontinuity Estimators
546
13.5
Potential Problems with Quasi-Experiments
548
Threats to Internal Validity
548
Th reats to
Externa
I Va
I id ity
550
13.6
Experimental and Quasi-Experimental Estimates in Heterogeneous
Populations
550
OLS with Heterogeneous Causal Effects
551
IV Regression with Heterogeneous Causal Effects
552
Contents 19
13.7
Conclusion
555
APPENDIX
13.1
The Project STAR Data Set
564
APPENDIX
13.2
IV Estimation When the Causal Effect Varies Across
Individuals
564
APPENDIX
13.3
The Potential Outcomes Framework for Analyzing Data
from Experiments
566
PART FOUR Regression Analysis of Economic Time Series Data
_______
CHAPTER
14
Introduction to Time Series Regression and Forecasting
568
14.1
Using Regression Models for Forecasting
569
14.2
Introduction to Time Series Data and Serial Correlation
570
Real GDP in the United States
570
Lags, First Differences, Logarithms, and Growth Rates
571
Autocorrelation
574
Other Examples of Economic Time Series
575
14.3 Autoregressions 577
The First-Order
Autoregressive
Model
577
The pth-Order
Autoregressive
Model
580
14.4
Time Series Regression with Additional Predictors and the
Autoregressive
Distributed Lag Model
583
Forecasting GDP Growth Using the Term Spread
583
Stationarity
586
Time Series Regression with Multiple Predictors
587
Forecast Uncertainty and Forecast Intervals
590
14.5
Lag Length Selection Using Information Criteria
593
Determining the Order of an
Autoregression 593
Lag Length Selection in Time Series Regression with Multiple Predictors
596
14.6
Nonstationarity I: Trends
597
What Is a Trend?
597
Problems Caused by Stochastic Trends
600
Detecting Stochastic Trends: Testing for a Unit
AR
Root
602
Avoiding the Problems Caused by Stochastic Trends
607
20 Contents
14.7 Nonstationarity
II:
Breaks
607
What Is a Break?
608
Testing for Breaks
608
Pseudo Out-of-Sample
Forecasting
613
Avoiding the Problems Caused by Breaks
619
14.8
Conclusion
619
APPENDIX
14.1
Time Series Data Used in Chapter
14 629
APPENDIX
14.2
Stationary in the AR(1) Model
630
APPENDIX
14.3
Lag Operator Notation
631
APPENDIX
14.4
ARMA
Models
632
APPENDIX
14.5
Consistency of the
BIC
Lag Length Estimator
633
CHAPTER
15
Estimation of Dynamic Causal Effects
635
15.1
An Initial Taste of the Orange Juice Data
636
15.2
Dynamic Causal Effects
639
Causal Effects and Time Series Data
639
Two Types of Exogeneity
642
15.3
Estimation of Dynamic Causal Effects with Exogenous
Regressors
643
The Distributed Lag Model Assumptions
644
Autocorrelated up Standard Errors, and Inference
645
Dynamic Multipliers and Cumulative Dynamic Multipliers
646
15.4
Heteroskedasticity- and Autocorrelation-Consistent Standard
Errors
647
Distribution of the OLS Estimator with Autocorrelated Errors
602
НАС
Standard Errors
650
15.5
Estimation of Dynamic Causal Effects with Strictly Exogenous
Regressors
652
The Distributed Lag Model with AR(1
)
Errors
653
OLS Estimation of the ADL Model
656
GLS Estimation
657
The Distributed Lag Model with Additional Lags and AR(p) Errors
659
15.6
Orange Juice Prices and Cold Weather
662
Contents 21
15.7
Is Exogeneity
Plausible?
Some Examples
670
U.S. Income and Australian Exports
670
Oil Prices and Inflation
671
Monetary Policy and Inflation
672
The Growth Rate of GDP and the Term Spread
672
15.8
Conclusion
673
APPENDIX
15.1
The Orange Juice Data Set
680
APPENDIX
15.2
The ADL Model and Generalized Least Squares in Lag
Operator Notation
680
CHAPTER
і б
Additional Topics in Time Series Regression
684
16.1
Vector
Autoregressions 684
The
VAR
Model
685
A VAR
Model of the Growth Rate of GDP and the Term Spread
688
16.2
Multiperiod Forecasts
689
Iterated Multiperiod Forecasts
689
Direct Multiperiod Forecasts
691
Which Method Should You Use?
694
16.3
Orders of Integration and the DF-GLS Unit Root Test
695
Other Models of Trends and Orders of Integration
695
The DF-GLS Test for a Unit Root
697
Why Do Unit Root Tests Have
Nonnormal
Distributions?
700
16.4
Cointegration
702
Cointegration
and Error Correction
702
How Can You Tell Whether Two Variables Are Cointegrated?
704
Estimation of Cointegrating Coefficients
705
Extension to Multiple Cointegrated Variables
707
Application to Interest Rates
708
16.5
Volatility Clustering and
Autoregressive
Conditional
Heteroskedasticity
710
Volatility Clustering
410
Autoregressive
Conditional Heteroskedasticity
712
Application to Stock Price Volatility
713
16.6
Conclusion
716
22 Contents
PART FIVE The Econometric Theory of Regression Analysis
_________
CHAPTER
17
The Theory of Linear Regression with One Regressor
722
17.1
The Extended Least Squares Assumptions and the OLS Estimator
723
The Extended Least Squares Assumptions
723
The OLS Estimator
725
17.2
Fundamentals of Asymptotic Distribution Theory
725
Convergence in Probability and the Law of Large Numbers
726
The Central Limit Theorem and Convergence in Distribution
728
Slutsky s Theorem and the Continuous Mapping Theorem
729
Application to the f-Statistic Based on the Sample Mean
730
17.3
Asymptotic Distribution of the OLS Estimator and
r-Statistic
731
Consistency and Asymptotic Normality of the OLS Estimators
731
Consistency of Heteroskedasticity-Robust Standard Errors
731
Asymptotic Normality of the Heteroskedasticity-Robust f-Statistic
733
17.4
Exact Sampling Distributions When the Errors Are Normally
Distributed
733
Distribution of
jß1
with Normal Errors
733
Distribution of the Homoskedasticity-Only f-Statistic
735
17.5
Weighted Least Squares
736
WLS with Known Heteroskedasticity
736
WLS with Heteroskedasticity of Known Functional Form
737
Heteroskedasticity-Robust Standard Errors or WLS?
740
APPENDIX
17.1
The Normal and Related Distributions and Moments of
Continuous Random Variables
746
APPENDIX
17.2
Two Inequalities
749
CHAPTER
18
The Theory of Multiple Regression
751
18.1
The Linear Multiple Regression Model and OLS Estimator in Matrix
Form
752
The Multiple Regression Model in Matrix Notation
752
The Extended Least Squares Assumptions
754
The OLS Estimator
755
Contents 23
18.2
Asymptotic
Distribution
of the OLS Estimator and
ŕ-Statistic
756
The
M u
Iti
variate Central
Limit Theorem
756
Asymptotic Normality of
β
757
Heteroskedasticity-Robust Standard Errors
758
Confidence Intervals for Predicted Effects
759
Asymptotic Distribution of the f-Statistic
759
18.3
Tests of Joint Hypotheses
759
Joint Hypotheses in Matrix Notation
760
Asymptotic Distribution of the F-Statistic
760
Confidence Sets for Multiple Coefficients
761
18.4
Distribution of Regression Statistics with Normal Errors
762
Matrix Representations of OLS Regression Statistics
762
Distribution of
jš
with Normal Errors
763
Distribution of sj
764
Homoskedasticity-Only Standard Errors
764
Distribution of the f-Statistic
765
Distribution of the F-Statistic
765
18.5
Efficiency of the OLS Estimator with Homoskedastic Errors
766
The Gauss-Markov Conditions for Multiple Regression
766
Linear Conditionally Unbiased Estimators
766
The Gauss-Markov Theorem for Multiple Regression
767
18.6
Generalized Least Squares
768
The GLS Assumptions
769
GLS When
Ω
Is Known
771
GLS When
Ω
Contains Unknown Parameters
772
The Zero Conditional Mean Assumption and GLS
772
18.7
Instrumental Variables and Generalized Method of Moments
Estimation
774
The
ÍV
Estimator in Matrix Form
775
Asymptotic Distribution of the TSLS Estimator
776
Properties of TSLS When the Errors Are Homoskedastic
777
Generalized Method of Moments Estimation in Linear Models
780
APPENDIX
18.1
Summary of Matrix Algebra
792
APPENDIX
18.2
Multivariate Distributions
795
APPENDIX
18.3
Derivation of the Asymptotic Distribution of
β
797
24
Contents
APPENDIX
18.4
Derivations of Exact Distributions of OLS Test Statistics
with Normal Errors
798
APPENDIX
18.5
Proof of the Gauss-Markov Theorem for Multiple
Regression
799
APPENDIX
18.6
Proof of Selected Results for IV and GMM Estimation
800
Appendix
803
References
811
Glossary
817
Index
825
|
any_adam_object | 1 |
author | Stock, James H. Watson, Mark W. 1952- |
author_GND | (DE-588)12457131X (DE-588)124571344 |
author_facet | Stock, James H. Watson, Mark W. 1952- |
author_role | aut aut |
author_sort | Stock, James H. |
author_variant | j h s jh jhs m w w mw mww |
building | Verbundindex |
bvnumber | BV042017068 |
classification_rvk | QH 300 QH 310 SK 980 |
classification_tum | WIR 017f |
ctrlnum | (OCoLC)896354881 (DE-599)BVBBV042017068 |
discipline | Mathematik Wirtschaftswissenschaften |
edition | Updated 3. ed., global ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01892nam a2200457 c 4500</leader><controlfield tag="001">BV042017068</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160524 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140808s2015 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781292071312</subfield><subfield code="9">978-1-292-07131-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1292071311</subfield><subfield code="9">1-292-07131-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780133486872</subfield><subfield code="9">978-0-13-348687-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)896354881</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042017068</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-M382</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-1047</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 300</subfield><subfield code="0">(DE-625)141566:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 310</subfield><subfield code="0">(DE-625)141567:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 980</subfield><subfield code="0">(DE-625)143277:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 017f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stock, James H.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12457131X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to econometrics</subfield><subfield code="c">James H. Stock ; Mark W. Watson</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Econometrics</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Updated 3. ed., global ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, Harlow [u.a.]</subfield><subfield code="b">Pearson</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">836 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Pearson series in economics</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Always learning</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 811 - 815</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Watson, Mark W.</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124571344</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027458833&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027458833</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV042017068 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:10:37Z |
institution | BVB |
isbn | 9781292071312 1292071311 9780133486872 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027458833 |
oclc_num | 896354881 |
open_access_boolean | |
owner | DE-20 DE-739 DE-573 DE-634 DE-19 DE-BY-UBM DE-188 DE-1050 DE-355 DE-BY-UBR DE-M382 DE-1043 DE-11 DE-945 DE-1049 DE-92 DE-384 DE-521 DE-1047 DE-706 DE-29 |
owner_facet | DE-20 DE-739 DE-573 DE-634 DE-19 DE-BY-UBM DE-188 DE-1050 DE-355 DE-BY-UBR DE-M382 DE-1043 DE-11 DE-945 DE-1049 DE-92 DE-384 DE-521 DE-1047 DE-706 DE-29 |
physical | 836 S. graph. Darst. |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Pearson |
record_format | marc |
series2 | The Pearson series in economics Always learning |
spelling | Stock, James H. Verfasser (DE-588)12457131X aut Introduction to econometrics James H. Stock ; Mark W. Watson Econometrics Updated 3. ed., global ed. Boston, Harlow [u.a.] Pearson 2015 836 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier The Pearson series in economics Always learning Literaturverz. S. 811 - 815 Ökonometrie (DE-588)4132280-0 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Ökonometrie (DE-588)4132280-0 s DE-604 Watson, Mark W. 1952- Verfasser (DE-588)124571344 aut Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027458833&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Stock, James H. Watson, Mark W. 1952- Introduction to econometrics Ökonometrie (DE-588)4132280-0 gnd |
subject_GND | (DE-588)4132280-0 (DE-588)4123623-3 |
title | Introduction to econometrics |
title_alt | Econometrics |
title_auth | Introduction to econometrics |
title_exact_search | Introduction to econometrics |
title_full | Introduction to econometrics James H. Stock ; Mark W. Watson |
title_fullStr | Introduction to econometrics James H. Stock ; Mark W. Watson |
title_full_unstemmed | Introduction to econometrics James H. Stock ; Mark W. Watson |
title_short | Introduction to econometrics |
title_sort | introduction to econometrics |
topic | Ökonometrie (DE-588)4132280-0 gnd |
topic_facet | Ökonometrie Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027458833&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT stockjamesh introductiontoeconometrics AT watsonmarkw introductiontoeconometrics AT stockjamesh econometrics AT watsonmarkw econometrics |