Mathematical understanding of nature: essays on amazing physical phenomena and their understanding by mathematicians
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
[2014]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xiv, 167 Seiten Illustrationen, Diagramme |
ISBN: | 9781470417017 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042014346 | ||
003 | DE-604 | ||
005 | 20230309 | ||
007 | t | ||
008 | 140806s2014 a||| |||| 00||| eng d | ||
020 | |a 9781470417017 |9 978-1-4704-1701-7 | ||
035 | |a (OCoLC)894725290 | ||
035 | |a (DE-599)BVBBV042014346 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-91G |a DE-384 |a DE-188 |a DE-20 |a DE-824 |a DE-29 |a DE-83 |a DE-29T | ||
084 | |a SK 110 |0 (DE-625)143215: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a SN 400 |0 (DE-625)143332: |2 rvk | ||
084 | |a MAT 006 |2 stub | ||
084 | |a MAT 022 |2 stub | ||
100 | 1 | |a Arnolʹd, V. I. |d 1937-2010 |e Verfasser |0 (DE-588)119540878 |4 aut | |
240 | 1 | 0 | |a Matematičeskoe ponimanie prirod'y |
245 | 1 | 0 | |a Mathematical understanding of nature |b essays on amazing physical phenomena and their understanding by mathematicians |c V. I. Arnold. Translated by Alexei Sossinsky, Olga Sipacheva |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c [2014] | |
264 | 4 | |c © 2014 | |
300 | |a xiv, 167 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Mathematische Modellierung |0 (DE-588)7651795-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | 1 | |a Mathematische Modellierung |0 (DE-588)7651795-0 |D s |
689 | 0 | 2 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Sossinsky, A. B. |d 1937- |0 (DE-588)122444817 |4 trl | |
700 | 1 | |a Sipacheva, Olga |4 trl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4704-1889-2 |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027456171&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-027456171 |
Datensatz im Suchindex
_version_ | 1804152428393660416 |
---|---|
adam_text | Titel: Mathematical understanding of nature
Autor: Arnol d, V. I
Jahr: 2014
Contents Foreword ix Preface xiii Chapter 1. The Eccentricity of the Keplerian Orbit of Mars 1 Chapter 2. Rescuing the Empennage 3 Chapter 3. Return Along a Sinusoid 5 Chapter 4. The Dirichlet Integral and the Laplace Operator 7 Chapter 5. Snell’s Law of Refraction 11 Chapter 6. Water Depth and Cartesian Science 15 Chapter 7. A Drop of Water Refracting Light 17 Chapter 8. Maximal Deviation Angle of a Beam 19 Chapter 9. The Rainbow 21 Chapter 10. Mirages 25 Chapter 11. Tide, Gibbs Phenomenon, and Tomography 29 v
VI Contents Chapter 12. Rotation of a Liquid 33 Chapter 13. What Force Drives a Bicycle Forward? 37 Chapter 14. Hooke and Keplerian Ellipses and Their Conformal Transformations 39 Chapter 15. The Stability of the Inverted Pendulum and Kapitsa’s Sewing Machine 45 Chapter 16. Space Flight of a Photo Camera Cap 49 Chapter 17. The Angular Velocity of a Clock Hand and Feynman’s “Self-Propagating Pseudoeducation” 51 Chapter 18. Planetary Rings 55 Chapter 19. Symmetry (and Curie’s Principle) 59 Chapter 20. Courant’s Erroneous Theorems 61 Chapter 21. Ill-Posed Problems of Mechanics 65 Chapter 22. Rational Fractions of Flows 69 Chapter 23. Journey to the Center of the Earth 71 Chapter 24. Mean Frequency of Explosions (according to Ya. B. Zel’dovich) and de Sitter’s World 75 Chapter 25. The Bernoulli Fountains of the Nikologorsky Bridge 79 Chapter 26. Shape Formation in a Three-Liter Glass Jar 83 Chapter 27. Lidov’s Moon Landing Problem 87 Chapter 28. The Advance and Retreat of Glaciers 91 Chapter 29. The Ergodic Theory of Geometric Progressions 99 Chapter 30. The Malthusian Partitioning of the World 101
Contents vii Chapter 31. Percolation and the Hydrodynamics of the Universe 103 Chapter 32. Buffon’s Problem and Integral Geometry 107 Chapter 33. Average Projected Area 111 Chapter 34. The Mathematical Notion of Potential 115 Chapter 35. Inversion in Cylindrical Mirrors in the Subway 127 Chapter 36. Adiabatic Invariants 143 Chapter 37. Universality of Hack’s Exponent for River Lengths 153 Chapter 38. Resonances in the Shukhov Tower, in the Sobolev Equation, and in the Tanks of Spin- Stabilized Rockets 155 Chapter 39. Rotation of Rigid Bodies and Hydrodynamics 161
|
any_adam_object | 1 |
author | Arnolʹd, V. I. 1937-2010 |
author2 | Sossinsky, A. B. 1937- Sipacheva, Olga |
author2_role | trl trl |
author2_variant | a b s ab abs o s os |
author_GND | (DE-588)119540878 (DE-588)122444817 |
author_facet | Arnolʹd, V. I. 1937-2010 Sossinsky, A. B. 1937- Sipacheva, Olga |
author_role | aut |
author_sort | Arnolʹd, V. I. 1937-2010 |
author_variant | v i a vi via |
building | Verbundindex |
bvnumber | BV042014346 |
classification_rvk | SK 110 SK 950 SN 400 |
classification_tum | MAT 006 MAT 022 |
ctrlnum | (OCoLC)894725290 (DE-599)BVBBV042014346 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02091nam a2200469 c 4500</leader><controlfield tag="001">BV042014346</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230309 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140806s2014 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470417017</subfield><subfield code="9">978-1-4704-1701-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)894725290</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042014346</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 110</subfield><subfield code="0">(DE-625)143215:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SN 400</subfield><subfield code="0">(DE-625)143332:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 006</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 022</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arnolʹd, V. I.</subfield><subfield code="d">1937-2010</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119540878</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Matematičeskoe ponimanie prirod'y</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical understanding of nature</subfield><subfield code="b">essays on amazing physical phenomena and their understanding by mathematicians</subfield><subfield code="c">V. I. Arnold. Translated by Alexei Sossinsky, Olga Sipacheva</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 167 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Modellierung</subfield><subfield code="0">(DE-588)7651795-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Modellierung</subfield><subfield code="0">(DE-588)7651795-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sossinsky, A. B.</subfield><subfield code="d">1937-</subfield><subfield code="0">(DE-588)122444817</subfield><subfield code="4">trl</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sipacheva, Olga</subfield><subfield code="4">trl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4704-1889-2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027456171&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027456171</subfield></datafield></record></collection> |
id | DE-604.BV042014346 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:10:33Z |
institution | BVB |
isbn | 9781470417017 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027456171 |
oclc_num | 894725290 |
open_access_boolean | |
owner | DE-11 DE-91G DE-BY-TUM DE-384 DE-188 DE-20 DE-824 DE-29 DE-83 DE-29T |
owner_facet | DE-11 DE-91G DE-BY-TUM DE-384 DE-188 DE-20 DE-824 DE-29 DE-83 DE-29T |
physical | xiv, 167 Seiten Illustrationen, Diagramme |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | American Mathematical Society |
record_format | marc |
spelling | Arnolʹd, V. I. 1937-2010 Verfasser (DE-588)119540878 aut Matematičeskoe ponimanie prirod'y Mathematical understanding of nature essays on amazing physical phenomena and their understanding by mathematicians V. I. Arnold. Translated by Alexei Sossinsky, Olga Sipacheva Providence, Rhode Island American Mathematical Society [2014] © 2014 xiv, 167 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Mathematische Modellierung (DE-588)7651795-0 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 s Mathematische Modellierung (DE-588)7651795-0 s Mathematisches Modell (DE-588)4114528-8 s DE-604 Sossinsky, A. B. 1937- (DE-588)122444817 trl Sipacheva, Olga trl Erscheint auch als Online-Ausgabe 978-1-4704-1889-2 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027456171&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Arnolʹd, V. I. 1937-2010 Mathematical understanding of nature essays on amazing physical phenomena and their understanding by mathematicians Mathematische Modellierung (DE-588)7651795-0 gnd Mathematische Physik (DE-588)4037952-8 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
subject_GND | (DE-588)7651795-0 (DE-588)4037952-8 (DE-588)4114528-8 |
title | Mathematical understanding of nature essays on amazing physical phenomena and their understanding by mathematicians |
title_alt | Matematičeskoe ponimanie prirod'y |
title_auth | Mathematical understanding of nature essays on amazing physical phenomena and their understanding by mathematicians |
title_exact_search | Mathematical understanding of nature essays on amazing physical phenomena and their understanding by mathematicians |
title_full | Mathematical understanding of nature essays on amazing physical phenomena and their understanding by mathematicians V. I. Arnold. Translated by Alexei Sossinsky, Olga Sipacheva |
title_fullStr | Mathematical understanding of nature essays on amazing physical phenomena and their understanding by mathematicians V. I. Arnold. Translated by Alexei Sossinsky, Olga Sipacheva |
title_full_unstemmed | Mathematical understanding of nature essays on amazing physical phenomena and their understanding by mathematicians V. I. Arnold. Translated by Alexei Sossinsky, Olga Sipacheva |
title_short | Mathematical understanding of nature |
title_sort | mathematical understanding of nature essays on amazing physical phenomena and their understanding by mathematicians |
title_sub | essays on amazing physical phenomena and their understanding by mathematicians |
topic | Mathematische Modellierung (DE-588)7651795-0 gnd Mathematische Physik (DE-588)4037952-8 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
topic_facet | Mathematische Modellierung Mathematische Physik Mathematisches Modell |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027456171&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT arnolʹdvi matematiceskoeponimanieprirody AT sossinskyab matematiceskoeponimanieprirody AT sipachevaolga matematiceskoeponimanieprirody AT arnolʹdvi mathematicalunderstandingofnatureessaysonamazingphysicalphenomenaandtheirunderstandingbymathematicians AT sossinskyab mathematicalunderstandingofnatureessaysonamazingphysicalphenomenaandtheirunderstandingbymathematicians AT sipachevaolga mathematicalunderstandingofnatureessaysonamazingphysicalphenomenaandtheirunderstandingbymathematicians |