Resistive, capacitive, inductive, and magnetic sensor technologies:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, FL [u.a.]
CRC Press
2015
|
Schriftenreihe: | Series in sensors
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXI, 386 S. Ill., graph. Darst. |
ISBN: | 9781439812440 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041989097 | ||
003 | DE-604 | ||
005 | 20150508 | ||
007 | t | ||
008 | 140723s2015 xxuad|| |||| 00||| eng d | ||
010 | |a 013045996 | ||
020 | |a 9781439812440 |9 978-1-4398-1244-0 | ||
035 | |a (OCoLC)904445616 | ||
035 | |a (DE-599)BVBBV041989097 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-29T |a DE-898 | ||
050 | 0 | |a TK7872.D48 | |
082 | 0 | |a 681/.2 |2 23 | |
084 | |a ZQ 3120 |0 (DE-625)158040: |2 rvk | ||
100 | 1 | |a Du, Winncy Y. |e Verfasser |0 (DE-588)1064663354 |4 aut | |
245 | 1 | 0 | |a Resistive, capacitive, inductive, and magnetic sensor technologies |c Winncy Y. Du |
264 | 1 | |a Boca Raton, FL [u.a.] |b CRC Press |c 2015 | |
300 | |a XXI, 386 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Series in sensors | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Sensors |2 bisacsh | |
650 | 7 | |a SCIENCE / Physics |2 bisacsh | |
650 | 4 | |a Detectors | |
650 | 4 | |a Transducers | |
650 | 4 | |a TECHNOLOGY & ENGINEERING / Sensors | |
650 | 4 | |a SCIENCE / Physics | |
650 | 0 | 7 | |a Sensortechnik |0 (DE-588)4121663-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Induktiver Sensor |0 (DE-588)4128001-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sensor |0 (DE-588)4038824-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Magnetischer Sensor |0 (DE-588)4661072-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektromagnetische Induktion |0 (DE-588)4129426-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sensor |0 (DE-588)4038824-4 |D s |
689 | 0 | 1 | |a Magnetischer Sensor |0 (DE-588)4661072-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Sensor |0 (DE-588)4038824-4 |D s |
689 | 1 | 1 | |a Sensortechnik |0 (DE-588)4121663-5 |D s |
689 | 1 | 2 | |a Magnetischer Sensor |0 (DE-588)4661072-8 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Elektromagnetische Induktion |0 (DE-588)4129426-9 |D s |
689 | 2 | 1 | |a Induktiver Sensor |0 (DE-588)4128001-5 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027431364&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-027431364 |
Datensatz im Suchindex
_version_ | 1804152393745563648 |
---|---|
adam_text | CONTENTS
PREFACE
....................................................................................................................XVII
ACKNOWLEDGMENTS
...................................................................................................XIX
AUTHOR
.....................................................................................................................XXI
CHAPTER
1
RCIM
SENSOR
CHARACTERISTICS
AND
TERMINOLOGY..................................1
1.1
RCIM
SENSOR
HISTORY................................................................1
1.2
RCIM
SENSOR
DEFINITION............................................................2
1.3
RCIM
SENSOR
CHARACTERISTICS
AND
TERMINOLOGY.......................2
1.3.1
TRANSFER
FUNCTION.........................................................2
1.3.2
SENSITIVITY.....................................................................2
1.3.3
OFFSET............................................................................5
1.3.4
FULL
SPAN
AND
FULL-SPAN
OUTPUT..................................5
1.3.5
ACCURACY.......................................................................7
1.3.6
HYSTERESIS.....................................................................8
1.3.7
NONLINEARITY.................................................................9
1.3.8
NOISE
AND
SIGNAL-TO-NOISE
RATIO..................................9
1.3.9
RESOLUTION...................................................................11
1.3.10
PRECISION
AND
REPEATABILITY
ERROR..............................12
1.3.11
CALIBRATION
AND
CALIBRATION
ERROR..............................14
1.3.12
RESPONSE
TIME
AND
BANDWIDTH..................................16
1.3.13
SENSOR
LIFESPAN..........................................................18
1.3.14
OTHER
SENSOR
CHARACTERISTICS......................................20
EXERCISES.............................................................................................21
REFERENCES..........................................................................................24
CHAPTER
2
RESISTIVE
SENSORS................................................................................25
2.1
INTRODUCTION.............................................................................25
2.2
POTENTIOMETRIE
SENSORS............................................................25
2.2.1
SENSING
PRINCIPLE........................................................25
2.2.2
CONFIGURATION
AND
CIRCUITRY.......................................26
2.2.3
POTENTIOMETRIE
SENSOR
DESIGN....................................29
2.2.3.1
LINEAR
POTENTIOMETERS.................................29
2.2.3.2
ROTARY
POTENTIOMETERS................................30
2.2.4
POTENTIOMETRIE
SENSOR
APPLICATIONS...........................30
2.2.4.1
POTENTIOMETRIE
PRESSURE
SENSORS.................30
2.2.4.2
POTENTIOMETRIE
AIRFLOW
SENSOR...................31
2.2.4.3
POTENTIOMETRIE
GAS
SENSOR..........................31
2.2.4.4
POTENTIOMETRIE
BIOSENSOR............................32
VII
CONTENTS
VIII
2.3
RESISTIVE
TEMPERATURE
SENSORS................................................33
2.3.1
THERMORESISTIVE
EFFECTS..............................................33
2.3.1.1
THERMORESISTIVE
EFFECT
FOR
METALS..............33
2.3.1.2
THERMORESISTIVE
EFFECT
FOR
SEMICONDUCTORS.........................................37
2.3.2
WIEDEMANN-FRANZ
LAW
FOR
METALS...........................39
2.3.3
RESISTANCE
TEMPERATURE
DEVICES
(RTDS)...................40
2.3.3.1
RTD
CHARACTERISTICS...................................40
2.3.3.2
RTD
MEASUREMENT......................................41
2.3.3.3
RTD
DESIGN................................................42
2.3.3.4
RTD
APPLICATIONS.......................................43
2.3.4
THERMISTORS................................................................44
2.3.4.1
THERMISTOR
CHARACTERISTICS.........................44
2.3.4.2
THERMISTOR
DESIGN......................................46
2.3.4.3
THERMISTOR
APPLICATIONS.............................48
2.4
PHOTORESISTIVE
SENSORS.............................................................49
2.4.1
PHOTORESISTIVE
EFFECT...................................................49
2.4.2
PHOTORESISTOR
CHARACTERISTICS......................................54
2.4.3
PHOTORESISTIVE
SENSOR
DESIGN.....................................56
2.4.4
PHOTORESISTIVE
SENSOR
APPLICATIONS............................57
2.5
PIEZORESISTIVE
SENSORS..............................................................58
2.5.1
PIEZORESISTIVE
EFFECT
IN
METALS
AND
ALLOYS.................58
2.5.2
PIEZORESISTIVE
EFFECT
IN
SEMICONDUCTORS....................60
2.5.3
CHARACTERISTICS
OF
PIEZORESISTIVE
SENSORS...................63
2.5.4
PIEZORESISTIVE
SENSOR
DESIGN......................................67
2.5.4.1
TYPES
AND
STRUCTURES
OF
STRAIN
GAUGES.......67
2.5.4.2
STRAIN
GAUGE
MATERIALS...............................70
2.5.4.3
SUPPORTING
STRUCTURE
AND
BONDING
METHODS
OF
STRAIN
GAUGES..........................71
2.5.5
PIEZORESISTIVE
SENSOR
APPLICATIONS.............................74
2.5.5.1
PIEZORESISTIVE
ACCELEROMETERS....................74
2.5.5.2
PIEZORESISTIVE
PRESSURE
SENSOR....................75
2.5.5.3
PIEZORESISTIVE
FLOW
RATE
SENSOR.................75
2.5.5.4
PIEZORESISTIVE
BLOOD
PRESSURE
SENSOR.........76
2.5.5.5
PIEZORESISTIVE
FORCE
SENSOR........................76
2.5.5.6
PIEZORESISTIVE
IMAGING
SENSOR....................76
2.6
CHEMORESISTIVE
SENSORS...........................................................77
2.6.1
CHEMORESISTIVE
EFFECT................................................77
2.6.2
CHARACTERISTICS
OF
CHEMORESISTIVE
SENSORS................79
2.6.2.1
CHARACTERISTICS
OF
MIXED
METAL
OXIDE
SEMICONDUCTOR
SENSORS...............................79
2.6.2.2
CHARACTERISTICS
OF
POLYMER
OR
ORGANIC
MATERIAL
SENSORS.........................................80
2.6.3
CHEMORESISTIVE
SENSOR
DESIGN...................................81
2.6.4
CHEMORESISTIVE
SENSOR
APPLICATIONS..........................84
2.6.4.1
HYGRISTOR.....................................................84
CONTENTS
IX
2.6.4.2
GROUNDWATER
MONITORING
SYSTEM...............84
2.6.4.3
ELECTRONIC
NOSE...........................................84
2.7
BIORESISTANCE/BIOIMPEDANCE
SENSORS......................................85
2.7.1
SENSING
PRINCIPLES......................................................85
2.7.1.1
TYPES
OF
BIORESISTANCE/BIOIMPEDANCE
SENSORS........................................................85
2
.
1.12
MODELING
OF
BIORESISTANCE/
BIOIMPEDANCE
SENSORS................................86
2.7.2
SENSOR
MATERIALS
AND
CHARACTERISTICS.........................87
2.7.3
DESIGNS
AND
APPLICATIONS
OF
BIORESISTANCE/
BIOIMPEDANCE
SENSORS...............................................88
2.7.3.1
BODY
COMPOSITION
MONITOR........................90
2.73.2
RESISTANCE
MEASUREMENT
AT
ACUPUNCTURE
POINTS.....................................90
2.7.33
OVULATION
PREDICTOR....................................91
2.73.4
VENOUS
BLOOD
VOLUME
MEASUREMENT.........91
EXERCISES..............................................;..............................................91
REFERENCES..........................................................................................96
CHAPTER
3
CAPACITIVE
SENSORS..............................................................................99
3.1
INTRODUCTION.............................................................................99
3.2
CAPACITORS
AND
CAPACITANCE...................................................100
3.3
PHYSICAL
LAWS
AND
EFFECTS
GOVERNING
CAPACITIVE
SENSORS...................................................................................106
3.3.1
COULOMB*S
LAW.........................................................106
3.3.2
GAUSS*S
LAW
FOR
ELECTRIC
FIELD..................................107
3.3.3
PIEZOELECTRIC
EFFECT..................................................110
3.3.4
EFFECT
OF
EXCITATION
FREQUENCIES..............................ILL
3.4
PARALLEL-PLATE
(FLAT-PLATE)
CAPACITIVE
SENSORS.......................112
3.4.1
SPACING-VARIATION-BASED
SENSORS.............................112
3.4.1.1
SENSING
PRINCIPLE
AND
CHARACTERISTICS......112
3.4.1.2
SENSOR
DESIGN...........................................113
3.4.13
SENSOR
APPLICATIONS..................................117
3.4.2
AREA-VARIATION-BASED
SENSORS..................................120
3.4.2.1
SENSING
PRINCIPLE
AND
CHARACTERISTICS......120
3.4.2.2
SENSOR
DESIGN...........................................120
3.4.23
SENSOR
APPLICATIONS..................................122
3.4.3
DIELECTRIC-CONSTANT-VARIATION-BASED
SENSORS..........125
3.4.3.1
SENSING
PRINCIPLE
AND
CHARACTERISTICS......125
3.43.2
SENSOR
DESIGN...........................................127
3.4.33
SENSOR
APPLICATIONS..................................127
3.4.4
ELECTRODE-PROPERTY-VARIATION-BASED
SENSORS...........132
3.4.4.1
SENSING
PRINCIPLE
AND
CHARACTERISTICS......132
3.4.4.2
ELECTRODE
MATERIALS
AND
DESIGN...............133
3.4.43
SENSOR
APPLICATIONS..................................133
X
CONTENTS
3.5
CYLINDRICAL
CAPACITIVE
SENSORS.............................................135
3.5.1
ELECTRODE-MOVEMENT-BASED
SENSORS...........................136
3.5.1.1
SENSING
PRINCIPLE
AND
CHARACTERISTICS......136
3.5.1.2
SENSOR
DESIGN
AND
APPLICATIONS...............136
3.5.2
DIELECTRIC-MEDIA-MOVEMENT-BASED
SENSORS............140
3.5.2.1
SENSING
PRINCIPLE
AND
CHARACTERISTICS......140
3.5.2.2
DESIGN
AND
APPLICATIONS...........................141
3.5.3
DIELECTRIC-CONSTANT-VARIATION-BASED
SENSORS...........141
3.5.3.1
TEMPERATURE
SENSOR..................................141
3.5.3.2
OIL
ANALYZER.............................................142
3.5.3.3
WATER
QUALITY
DETECTOR.............................142
3.6
SPHERICAL
CAPACITIVE
SENSORS.................................................143
3.6.1
GEOPHYSICAL
FLUID
FLOW
CELL....................................143
3.6.2
COATING
THICKNESS
DETECTOR.....................................144
3.6.3
ULTRA-PRECISION
SPHERICAL
PROBE...............................144
3.7
CAPACITIVE
SENSOR
ARRAYS......................................................144
3.7.1
SPHERICALLY
FOLDED
PRESSURE
SENSOR
ARRAY...............145
3.7.2
CAPACITIVE
FINGER
PRINT
DETECTOR..............................146
3.7.3
CAPACITIVE
TOUCHSCREEN............................................146
EXERCISES...........................................................................................147
REFERENCES........................................................................................151
CHAPTER
4
INDUCTIVE
SENSORS..............................................................................153
4.1
INTRODUCTION...........................................................................153
4.2
INDUCTORS,
INDUCTANCE,
AND
MAGNETIC
FIELD...........................154
4.2.1
INDUCTORS...................................................................154
4.2.2
INDUCTANCE
AND
MAGNETIC
FIELD................................155
4.3
PHYSICAL
LAWS
AND
EFFECTS
GOVERNING
INDUCTIVE
SENSORS.....159
4.3.1
LORENTZ
FORCE...........................................................159
4.3.2
FARADAY*S
LAW
OF
ELECTROMAGNETIC
INDUCTION...........161
4.3.3
BIOT-SAVART
LAW.......................................................162
4.3.4
AMPERE*S
LAW..........................................................162
4.3.5
MAGNETOMOTIVE
FORCE...............................................163
4.3.6
EDDY
CURRENT............................................................164
4.3.7
SKIN
EFFECT................................................................165
4.3.S
PROXIMITY
EFFECT.......................................................166
4.3.9
ELECTRIC
AND
MAGNETIC
FIELD
ANALOGIES....................168
4.4
CHARACTERISTICS
AND
MATERIALS
OF
INDUCTIVE
SENSORS..............168
4.4.1
TERMINOLOGIES...........................................................168
4.4.2
COIL
MATERIALS...........................................................169
4.4.3
CORE
MATERIALS..........................................................169
4.4.3.1
B-H
CHARACTERISTICS
OF
MAGNETIC
CORE
MATERIALS...................................................170
4.4.3.2
MAGNETIC
HYSTERESIS
LOOP........................171
CONTENTS
XI
4.4.4
HOUSING,
CABLE,
AND
TARGET
MATERIALS......................172
4.4.5
POWER
LOSSES
IN
INDUCTIVE
SENSORS..........................173
4.4.6
QUALITY
FACTOR
Q
.......................................................175
4.4.7
NUMBER
OF
TURNS
N
...................................................175
4.4.8
FREQUENCY
RESPONSE
OF
INDUCTIVE
SENSORS...............175
4.4.9
STABILITY
OF
INDUCTIVE
SENSORS...................................176
4.4.9.1
THERMAL
STABILITY......................................176
4.4.9.2
LONG-TERM
STABILITY..................................176
4.5
TYPES
AND
OPERATING
PRINCIPLES
OF
INDUCTIVE
SENSORS...................................................................................176
4.5.1
TYPES
OF
INDUCTIVE
SENSORS.......................................176
4.5.2
OPERATING
PRINCIPLES.................................................178
4.6
INDUCTIVE
AIR
COIL
SENSORS....................................................179
4.6.1
TYPES
OF
AIR
COILS....................................................179
4.6.2
FEATURES
OF
AIR
COIL
SENSORS....................................180
4.6.3
DESIGN
CONSIDERATIONS
OF
AIR
COIL
SENSORS..............181
4.6.3.1
COIL
DIAMETER...........................................181
4.6.3.2
TARGET
THICKNESS
AND
TEMPERATURE
STABILITY
OF
TARGET
MATERIAL......................181
4.6.3.3
EMI
INTERFERENCE......................................181
4.6.3.4
OTHER
CONSIDERATIONS................................182
4.6.4
APPLICATIONS
OF
AIR
COIL
SENSORS.............................183
4.7
INDUCTIVE
SENSORS
WITH
FERROMAGNETIC
CORES........................184
4.7.1
CHARACTERISTICS
OF
INDUCTIVE
SENSORS
WITH
MAGNETIC
CORES........................................................184
4.7.2
SENSOR
DESIGN...........................................................185
4.7.2.1
FERROMAGNETIC
CORE
DESIGN......................185
4.7.2.2
PROBE
DESIGN.............................................186
4.7.3
APPLICATIONS
OF
INDUCTIVE
SENSORS
WITH
FERROMAGNETIC
CORES................................................189
4.7.3.1
INDUCTIVE
PROXIMITY
SENSOR......................190
4.7.3.2
INDUCTIVE
DISPLACEMENT
SENSOR.................190
4.7.3.3
EDDY-CURRENT
FORCE
SENSOR......................191
4.7.3.4
THREAD
DETECTOR........................................191
4.8
TRANSFORMER-TYPE
INDUCTIVE
SENSORS.....................................192
4.8.1
INTRODUCTION..............................................................192
4.8.2
SENSING
PRINCIPLES
OF
LVDTS,
FLUXGATE
SENSORS,
RVDTS,
SYNCHROS,
AND
RESOLVERS.............................195
4.8.2.1
LVDTS/RVDTS.........................................195
4.8.2.2
FLUXGATE
SENSORS.......................................197
4.8.2.3
SYNCHROS
AND
RESOLVERS............................198
4.8.3
FEATURES
OF
TRANSFORMER-TYPE
SENSORS.....................201
4.8.3.1
FEATURES
OF
LVDTS
AND
RVDTS................201
4.8.3.2
FEATURES
OF
FLUXGATE
SENSORS....................202
4.8.3.3
FEATURES
OF
SYNCHROS
AND
RESOLVERS.........203
CONTENTI
XUE
4.8.4
DESIGN
AND
APPLICATIONS
OF
LVDTS,
RVDTS,
FLUXGATE
SENSORS,
SYNCHROS,
AND
RESOLVERS.............20
4.8.4.1
DESIGN
AND
APPLICATIONS
OF
LVDTS/
RVDTS/PVDTS.........................................2(L
4.8.4.2
DESIGN
AND
APPLICATIONS
OF
FLUXGATE
SENSORS......................................................20(
4.8.4.3
DESIGN
AND
APPLICATIONS
OF
SYNCHROS
AND
RESOLVERS............................................20S
4.9
OSCILLATOR
AND
SIGNAL
PROCESSING
CIRCUITS
OF
INDUCTIVE
SENSORS...................................................................................211
4.9.1
COLPITTS
OSCILLATOR....................................................212
4.9.2
BALANCED
WHEATSTONE
BRIDGE
CIRCUIT.......................212
4.9.3
PHASE
CIRCUIT............................................................214
EXERCISES...........................................................................................214
REFERENCES........................................................................................220
CHAPTER
5
MAGNETIC
SENSORS.............................................................................223
5.1
INTRODUCTION...........................................................................223
5.2
HALL
SENSORS...........................................................................224
5.2.1
HALL
EFFECT................................................................224
5.2.1.1
HALL
EFFECT
IN
METALS................................226
5.2.1.2
HALL
EFFECT
IN
SEMICONDUCTORS..................227
5.2.2
OPERATING
PRINCIPLE
OF
HALL
SENSORS........................228
5.2.3
CHARACTERISTICS
OF
HALL
SENSORS................................228
5.2.3.1
TRANSFER
FUNCTION......................................229
5.2.3.2
SENSITIVITY
(OR
GAIN)..................................229
5.2.3.3
OHMIC
OFFSET............................................230
5.2.3.4
NONLINEARITY..............................................230
5.2.3.5
INPUT
AND
OUTPUT
RESISTANCE
AND
THEIR
TEMPERATURE
COEFFICIENT...........................230
5.2.3.6
NOISE.........................................................230
5.2.4
TYPES
AND
DESIGN
OF
HALL
SENSORS............................231
5.2.4.1
VERTICAL
CONFIGURATIONS.............................232
5.2.4.2
CYLINDRICAL
CONFIGURATIONS.......................233
5.2.4.3
MULTIAXIS
CONFIGURATIONS..........................234
5.2.5
APPLICATIONS
OF
HALL
SENSORS....................................234
5.2.5.1
HALL
POSITION
SENSOR..................................234
5.2.5.2
HALL
CURRENT
SENSOR..................................235
5.2.5.3
DOOR
SECURITY
SYSTEM...............................236
5.2.5.4
FLOW
RATE
METER.......................................237
5.2.5.5
MOTOR
CONTROL...........................................237
5.3
MAGNETORESISTIVE
SENSORS......................................................239
5.3.1
MAGNETORESISTANCE
EFFECTS.......................................239
5.3.1.1
ORDINARY
MAGNETORESISTANCE
(OMR)
EFFECT.........................................................240
CONTENTS
XIU
5.3.1.2
ANISOTROPIC
MAGNETORESISTANCE
(AMR)
EFFECT
.........................................................241
5.3.1.3
GIANT
MAGNETORESISTANCE
(GMR)
EFFECT.........................................................243
5.3.1.4
TUNNELING
MAGNETORESISTANCE
(TMR)
EFFECT.........................................................244
5.3.1.5
BALLISTIC
MAGNETORESISTANCE
(BMR)
EFFECT.........................................................245
5.3.1.6
COLOSSAL
MAGNETORESISTANCE
(CMR)
EFFECT.........................................................246
5.3.2
AMR
SENSORS
AND
THE
BARBER-POLE
STRUCTURE..........246
5.3.3
AMR
SENSOR
MATERIALS
AND
CIRCUIT
CONFIGURATIONS.......................................................249
5.3.4
GMR
SENSORS
AND
THEIR
MULTILAYER
STRUCTURES.......250
5.3.5
MR
SENSOR
DESIGN...................................................252
5.3.6
MR
SENSOR
APPLICATIONS..........................................253
5.3.6.1
MAGNETIC
RECORDING
SYSTEM.....................254
5.3.6.2
MR
BIOCHIPS.............................................254
5.3.6.3
CURRENCY
COUNTER.....................................254
5.4
MAGNETOSTRICTIVE/MAGNETOELASTIC
SENSORS.............................256
5.4.1
MAGNETOSTRICTIVE
EFFECTS..........................................256
5.4.1.1
JOULE
AND
VILLARI
EFFECTS...........................256
5.4.1.2
WIEDEMANN
AND
MATTEUCI
EFFECTS............257
5.4.2
OPERATING
PRINCIPLES
OF
MAGNETOSTRICTIVE
SENSORS.......................................................................258
5.4.3
MATERIALS
AND
CHARACTERISTICS
OF
MAGNETOSTRICTIVE
SENSORS.........................................258
5.4.4
DESIGN
AND
APPLICATIONS
OF
MAGNETOSTRICTIVE
SENSORS.....................................................................259
5.4.4.1
MAGNETOSTRICTIVE
POSITION
SENSOR.............260
5.4.4.2
MAGNETOSTRICTIVE
LEVEL
TRANSMITTER..........260
5.4.4.3
MAGNETOSTRICTIVE
FORCE/STRESS
SENSORS.....262
5.4.4.4
MAGNETOSTRICTIVE
TORQUE
SENSORS..............263
5.4.4.5
MAGNETIC
FIELD
SENSOR..............................265
5.4.4.6
MAGNETOSTRICTIVE
FIBER-OPTIC
MAGNETOMETERS.........................................265
5.5
NUCLEAR
MAGNETIC
RESONANCE
(NMR)/MAGNETIC
RESONANCE
IMAGING
(MRI)
SENSORS......................................266
5.5.1
NUCLEAR
MAGNETIC
RESONANCE...................................266
5.5.2
MAGNETIC
RESONANCE
IMAGING..................................267
5.5.3
OPERATING
PRINCIPLES
OF
MAGNETIC
RESONANCE
SENSORS.....................................................................268
5.5.4
DESIGN
AND
APPLICATIONS
OF
MAGNETIC
RESONANCE
SENSORS.....................................................................268
5.5.4.1
RESONANT
MAGNETIC
FIELD
SENSORS.............268
5.5.4.2
MRI
DEVICES.............................................270
XIV
CONTENTS
5.6
BARKHAUSEN
SENSORS...............................................................270
5.6.1
BARKHAUSEN
EFFECT....................................................270
5.6.2
OPERATING
PRINCIPLE
OF
BARKHAUSEN
SENSORS............271
5.6.3
DESIGN
AND
APPLICATIONS
OF
BARKHAUSEN
SENSORS.....272
5.6.3.1
IMPACT
TOUGHNESS
TESTER..........................272
5.6.3.2
BARKHAUSEN
STRESS
SENSOR.........................272
5.7
WIEGAND
SENSORS...................................................................273
5.7.1
WIEGAND
EFFECT.........................................................273
5.7.2
OPERATING
PRINCIPLE
OF
WIEGAND
SENSORS.................273
5.7.3
DESIGN
AND
APPLICATIONS
OF
WIEGAND
SENSORS.........274
5.8
MAGNETO-OPTICAL
SENSORS......................................................276
5.8.1
MAGNETO-OPTICAL
EFFECTS..........................................276
5.8.1.1
FARADAY
EFFECT...........................................276
5.8.1.2
VOIGT
AND
COTTON-MOUTON
EFFECTS............277
5.8.1.3
MALUS*S
LAW..............................................278
5.8.1.4
MAGNETO-OPTICAL
KERR
EFFECT...................279
5.8.2
OPERATING
PRINCIPLES
OF
MAGNETO-OPTICAL
(MO)
SENSORS.....................................................................281
5.8.3
MATERIALS
AND
CHARACTERISTICS
OF
MO
SENSORS..........284
5.8.4
DESIGN
AND
APPLICATIONS
OF
MAGNETO-OPTICAL
SENSORS.....................................................................285
5.8.4.1
FARADAY
CURRENT
SENSOR............................286
5.8.4.2
MO
DISK
READER.......................................286
5.8.4.3
MOKE
SENSOR
FOR
MAGNETIZATION
STUDY....
286
5.8.4.4
FIBER-TERFENOL-D
FLYBRID
SENSOR...............287
5.9
SUPERCONDUCTING
QUANTUM
INTERFERENCE
DEVICES
(SQUIDS)..........................................................................287
5.9.1
SUPERCONDUCTOR
QUANTUM
EFFECTS............................287
5.9.1.1
MEISSNER
EFFECT.........................................287
5.9.1.2
JOSEPHSON
EFFECT.......................................288
5.9.2
OPERATING
PRINCIPLE
OF
SQUIDS...............................290
5.9.2.1
DC
SQUID...............................................290
5.9.2.2
RF
SQUID................................................291
5.9.3
MATERIALS
AND
CHARACTERISTICS
OF
SQUID
SENSORS.....................................................................292
5.9.4
SQUID
NOISE...........................................................293
5.9.5
DESIGN
AND
APPLICATIONS
OF
SQUIDS.......................294
5.9.5.1
SQUID
FOR
BIOMAGNETISM........................295
5.9.5.2
SQUID
BATTERY
MONITORS.........................295
EXERCISES...........................................................................................296
REFERENCES........................................................................................299
CHAPTER
6
RCIM
SENSOR
CIRCUITRY....................................................................303
6.1
INTRODUCTION...........................................................................303
6.2
RCIM
SENSOR
SIGNAL
CHARACTERISTICS.....................................303
CONTENTS
XV
6.3
SENSOR
NOISE
SOURCES
AND
FORMING
MECHANISMS.................305
6.3.1
NOISE
SOURCES...........................................................306
6.3.2
NOISE
TRANSMISSION
MECHANISMS.............................306
6.3.2.1
CONDUCTIVE
COUPLING................................306
6.3.2.2
CAPACITIVE
COUPLING..................................306
6.3.2.3
INDUCTIVE
COUPLING...................................307
6.3.2.4
ELECTROMAGNETIC
COUPLING........................308
6.3.3
TYPES
OF
NOISE..........................................................309
6.3.3.1
CROSSTALK...................................................310
6.3.3.2
POPCORN
NOISE...........................................310
6.3.3.3
THERMAL
(JOHNSON
OR
NYQUIST)
NOISE........310
6.3.3.4
!/*
(FLICKER
OR
PINK)
NOISE........................312
6.3.3.5
SHOT
NOISE.................................................313
6.4
GROUNDING
AND
SHIELDING
TECHNIQUES...................................313
6.4.1
GROUNDING
AND
GROUND
LOOPS.................................314
6.4.2
SHIELDING...................................................................314
6.4.2.1
CAPACITIVE
SHIELDING.................................314
6.4.2.2
INDUCTIVE
SHIELDING...................................315
6.4.2.3
ELECTROMAGNETIC
SHIELDING........................316
6.5
DC
BRIDGES
FOR
RESISTANCE
MEASUREMENTS............................316
6.5.1
WHEATSTONE
BRIDGE
AND
ITS
BALANCE
CONDITION........317
6.5.2
SENSITIVITY
OF
A
WHEATSTONE
BRIDGE..........................319
6.5.3
WHEATSTONE
BRIDGE-DRIVEN
MEANS...........................321
6.5.3.1
WHEATSTONE
BRIDGE
DRIVEN
BY
A
CONSTANT
VOLTAGE.......................................321
6.5.3.2
WHEATSTONE
BRIDGE
DRIVEN
BY
A
CONSTANT
CURRENT.......................................322
6.5.4
KELVIN
BRIDGE...........................................................325
6.5.5
MEGAOHM
BRIDGE......................................................326
6.6
AC
BRIDGES
FOR
CAPACITANCE
AND
INDUCTANCE
MEASUREMENTS....................................................................327
6.6.1
AC
BRIDGE
AND
ITS
BALANCE
CONDITION......................328
6.6.2
COMPARISON
BRIDGE..................................................330
6.6.3
SCHERING
BRIDGE........................................................332
6.6.4
MAXWELL
BRIDGE........................................................333
6.6.5
HAY
BRIDGE................................................................333
6.6.6
OWEN
BRIDGE.............................................................335
6.6.7
WIEN
BRIDGE..............................................................335
6.6.8
BRIDGE
SELECTION
CONSIDERATIONS..............................336
6.7
RCIM
SENSOR
OUTPUT
CIRCUITS...............................................337
6.7.1
VOLTAGE
OUTPUT
CIRCUITS............................................337
6.7.2
CURRENT
OUTPUT
CIRCUITS............................................339
6.7.3
CHARGE
OUTPUT
CIRCUITS............................................340
6.7.4
RESISTANCE
OUTPUT
CIRCUITS.......................................341
6.7.4.1
RESISTANCE-TO-VOLTAGE
CONVERSION............341
6.7.4.2
RESISTANCE-TO-CURRENT
CONVERSION............342
XVI
CONTENTS
6.7.4.3
RESISTANCE-TO-TIME
CONVERSION
(RC
DECAY).......................................................343
6.7.4.4
RESISTANCE-TO-FREQUENCY
CONVERSION:
RC
OSCILLATOR............................................344
6.7.5
CAPACITANCE
OUTPUT
CIRCUITS....................................345
6.7.5.1
CAPACITANCE-TO-VOLTAGE
CONVERSION..........345
6.7.5.2
CAPACITANCE-TO-TIME
CONVERSION:
RC
DECAY........................................................346
6.7.5.3
CAPACITANCE-TO-TIME-TO-VOLTAGE
CONVERSION................................................346
6.7.5.4
CAPACITANCE-TO-FREQUENCY
CONVERSION:
RC
OSCILLATOR............................................346
6.7.6
INDUCTANCE
OUTPUT
CIRCUITS......................................347
6.8
SENSOR
COMPENSATION
CIRCUITS..............................................349
6.8.1
TEMPERATURE
COMPENSATION......................................349
6.8.2
NONLINEARITY
COMPENSATION.....................................350
6.8.3
OFFSET
ERROR
COMPENSATION......................................350
6.9
SENSOR
SIGNAL
CONDITIONING,
PASSIVE
AND
ACTIVE
FILTERS........351
6.9.1
FILTERING....................................................................351
6.9.2
CHARACTERISTICS
OF
A
FILTER.........................................352
6.9.3
PASSIVE
FILTERS...........................................................354
6.9.4
ACTIVE
FILTERS............................................................357
6.9.5
A
DESIGN
EXAMPLE
OF
SENSOR
SIGNAL
CONDITIONING
CIRCUITS...............................................359
6.9.5.1
AMPLIFICATION
CIRCUIT................................359
6.9.5.2
HIGH-PASS
FILTER........................................359
6.9.5.3
LOW-PASS
FILTER.........................................360
6.9.5.4
NOTCH/BAND-REJECT
FILTER..........................361
EXERCISES...........................................................................................364
REFERENCES........................................................................................371
INDEX
375
|
any_adam_object | 1 |
author | Du, Winncy Y. |
author_GND | (DE-588)1064663354 |
author_facet | Du, Winncy Y. |
author_role | aut |
author_sort | Du, Winncy Y. |
author_variant | w y d wy wyd |
building | Verbundindex |
bvnumber | BV041989097 |
callnumber-first | T - Technology |
callnumber-label | TK7872 |
callnumber-raw | TK7872.D48 |
callnumber-search | TK7872.D48 |
callnumber-sort | TK 47872 D48 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | ZQ 3120 |
ctrlnum | (OCoLC)904445616 (DE-599)BVBBV041989097 |
dewey-full | 681/.2 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 681 - Precision instruments and other devices |
dewey-raw | 681/.2 |
dewey-search | 681/.2 |
dewey-sort | 3681 12 |
dewey-tens | 680 - Manufacture of products for specific uses |
discipline | Handwerk und Gewerbe / Verschiedene Technologien Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02249nam a2200589 c 4500</leader><controlfield tag="001">BV041989097</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150508 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140723s2015 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">013045996</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439812440</subfield><subfield code="9">978-1-4398-1244-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)904445616</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041989097</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7872.D48</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">681/.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 3120</subfield><subfield code="0">(DE-625)158040:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Du, Winncy Y.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1064663354</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Resistive, capacitive, inductive, and magnetic sensor technologies</subfield><subfield code="c">Winncy Y. Du</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, FL [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 386 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Sensors</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transducers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TECHNOLOGY & ENGINEERING / Sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SCIENCE / Physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sensortechnik</subfield><subfield code="0">(DE-588)4121663-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Induktiver Sensor</subfield><subfield code="0">(DE-588)4128001-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sensor</subfield><subfield code="0">(DE-588)4038824-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Magnetischer Sensor</subfield><subfield code="0">(DE-588)4661072-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektromagnetische Induktion</subfield><subfield code="0">(DE-588)4129426-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sensor</subfield><subfield code="0">(DE-588)4038824-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Magnetischer Sensor</subfield><subfield code="0">(DE-588)4661072-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Sensor</subfield><subfield code="0">(DE-588)4038824-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Sensortechnik</subfield><subfield code="0">(DE-588)4121663-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Magnetischer Sensor</subfield><subfield code="0">(DE-588)4661072-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Elektromagnetische Induktion</subfield><subfield code="0">(DE-588)4129426-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Induktiver Sensor</subfield><subfield code="0">(DE-588)4128001-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027431364&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027431364</subfield></datafield></record></collection> |
id | DE-604.BV041989097 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:10:00Z |
institution | BVB |
isbn | 9781439812440 |
language | English |
lccn | 013045996 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027431364 |
oclc_num | 904445616 |
open_access_boolean | |
owner | DE-703 DE-29T DE-898 DE-BY-UBR |
owner_facet | DE-703 DE-29T DE-898 DE-BY-UBR |
physical | XXI, 386 S. Ill., graph. Darst. |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | CRC Press |
record_format | marc |
series2 | Series in sensors |
spelling | Du, Winncy Y. Verfasser (DE-588)1064663354 aut Resistive, capacitive, inductive, and magnetic sensor technologies Winncy Y. Du Boca Raton, FL [u.a.] CRC Press 2015 XXI, 386 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Series in sensors TECHNOLOGY & ENGINEERING / Sensors bisacsh SCIENCE / Physics bisacsh Detectors Transducers TECHNOLOGY & ENGINEERING / Sensors SCIENCE / Physics Sensortechnik (DE-588)4121663-5 gnd rswk-swf Induktiver Sensor (DE-588)4128001-5 gnd rswk-swf Sensor (DE-588)4038824-4 gnd rswk-swf Magnetischer Sensor (DE-588)4661072-8 gnd rswk-swf Elektromagnetische Induktion (DE-588)4129426-9 gnd rswk-swf Sensor (DE-588)4038824-4 s Magnetischer Sensor (DE-588)4661072-8 s DE-604 Sensortechnik (DE-588)4121663-5 s Elektromagnetische Induktion (DE-588)4129426-9 s Induktiver Sensor (DE-588)4128001-5 s HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027431364&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Du, Winncy Y. Resistive, capacitive, inductive, and magnetic sensor technologies TECHNOLOGY & ENGINEERING / Sensors bisacsh SCIENCE / Physics bisacsh Detectors Transducers TECHNOLOGY & ENGINEERING / Sensors SCIENCE / Physics Sensortechnik (DE-588)4121663-5 gnd Induktiver Sensor (DE-588)4128001-5 gnd Sensor (DE-588)4038824-4 gnd Magnetischer Sensor (DE-588)4661072-8 gnd Elektromagnetische Induktion (DE-588)4129426-9 gnd |
subject_GND | (DE-588)4121663-5 (DE-588)4128001-5 (DE-588)4038824-4 (DE-588)4661072-8 (DE-588)4129426-9 |
title | Resistive, capacitive, inductive, and magnetic sensor technologies |
title_auth | Resistive, capacitive, inductive, and magnetic sensor technologies |
title_exact_search | Resistive, capacitive, inductive, and magnetic sensor technologies |
title_full | Resistive, capacitive, inductive, and magnetic sensor technologies Winncy Y. Du |
title_fullStr | Resistive, capacitive, inductive, and magnetic sensor technologies Winncy Y. Du |
title_full_unstemmed | Resistive, capacitive, inductive, and magnetic sensor technologies Winncy Y. Du |
title_short | Resistive, capacitive, inductive, and magnetic sensor technologies |
title_sort | resistive capacitive inductive and magnetic sensor technologies |
topic | TECHNOLOGY & ENGINEERING / Sensors bisacsh SCIENCE / Physics bisacsh Detectors Transducers TECHNOLOGY & ENGINEERING / Sensors SCIENCE / Physics Sensortechnik (DE-588)4121663-5 gnd Induktiver Sensor (DE-588)4128001-5 gnd Sensor (DE-588)4038824-4 gnd Magnetischer Sensor (DE-588)4661072-8 gnd Elektromagnetische Induktion (DE-588)4129426-9 gnd |
topic_facet | TECHNOLOGY & ENGINEERING / Sensors SCIENCE / Physics Detectors Transducers Sensortechnik Induktiver Sensor Sensor Magnetischer Sensor Elektromagnetische Induktion |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027431364&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT duwinncyy resistivecapacitiveinductiveandmagneticsensortechnologies |