Physical hydrodynamics:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English French |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2015
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVII, 512 S. Ill., graph. Darst. |
ISBN: | 9780198702443 9780198702450 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041980428 | ||
003 | DE-604 | ||
005 | 20150619 | ||
007 | t | ||
008 | 140717s2015 ad|| |||| 00||| eng d | ||
020 | |a 9780198702443 |c hbk. |9 978-0-19-870244-3 | ||
020 | |a 9780198702450 |c pbk. |9 978-0-19-870245-0 | ||
035 | |a (OCoLC)903592175 | ||
035 | |a (DE-599)BVBBV041980428 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 1 | |a eng |h fre | |
049 | |a DE-91G |a DE-20 |a DE-19 |a DE-11 |a DE-91 |a DE-634 |a DE-703 |a DE-188 |a DE-29T |a DE-384 | ||
050 | 0 | |a QA911 | |
082 | 0 | |a 532.5 |2 21 | |
082 | 0 | |a 530.42 |2 21 | |
084 | |a UF 4000 |0 (DE-625)145577: |2 rvk | ||
084 | |a PHY 220f |2 stub | ||
130 | 0 | |a Hydrodynamique physique | |
245 | 1 | 0 | |a Physical hydrodynamics |c Etienne Guyon ... |
250 | |a 2. ed. | ||
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2015 | |
300 | |a XVII, 512 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Hydrodynamica |2 gtt | |
650 | 7 | |a Vloeistofmechanica |2 gtt | |
650 | 4 | |a Hydrodynamics | |
650 | 0 | 7 | |a Hydrodynamik |0 (DE-588)4026302-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Hydrodynamik |0 (DE-588)4026302-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Guyon, Étienne |d 1935-2023 |e Sonstige |0 (DE-588)172111064 |4 oth | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027422895&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-027422895 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152380910993408 |
---|---|
adam_text | Titel: Physical hydrodynamics
Autor: Guyon, Etienne
Jahr: 2015
Contents
Introduction xv
1 The Physics of Fluids 1
1.1 The liquid state 1
1.1.1 The different states of matter: model systems and real media 2
1.1.2 The solid-liquid transition: a sometimes nebulous boundary 5
1.2 Macroscopic transport coefficients 5
1.2.1 Thermal conductivity 6
1.2.2 Mass diffusion 11
1.3 Microscopic models for transport phenomena 13
1.3.1 The random walk 13
1.3.2 Transport coefficients for ideal gases 15
1.3.3 Diffusive transport phenomena in liquids 19
1.4 Surface effects and surface tension 21
1.4.1 Surface tension 21
1.4.2 Pressure differences associated with surface tension 23
1.4.3 Spreading of drops on a surface-the idea of wetting 25
1.4.4 Influence of gravity 27
1.4.5 Some methods for measuring the surface tension 29
1.4.6 The Rayleigh-Taylor instability 31
1.5 Scattering of electromagnetic waves and particles in fluids 33
1.5.1 Some probes of the structure of liquids 33
1.5.2 Elastic and inelastic scattering 34
1.5.3 Elastic and quasi elastic scattering of light: a tool for studying the structure and diffusive transport in liquids 37
1.5.4 Inelastic scattering of light in liquids 40
1A Appendix - Transport coefficients in fluids 42
2 Momentum Transport Under Various Flow Conditions 43
2.1 Diffusive and convective transport of momentum in flowing fluids 43
2.1.1 Diffusion and convection of momentum: two illustrative experiments 43
2.1.2 Momentum transport in a shear flow - introduction of the viscosity 45
2.2 Microscopic models of the viscosity 48
2.2.1 Viscosity of gases 48
2.2.2 Viscosity of liquids 49
2.2.3 Numerical simulation of molecular trajectories in a flow 51
2.3 Comparison between diffusion and convection mechanisms 52
2.3.1 The Reynolds number 52
2.3.2 Convective and diffusive mass, or thermal energy, transport 53
2.4 Description of various flow regimes 55
2.4.1 Flows in a cylindrical tube: Reynolds experiment 56
2.4.2 Various flow regimes in the wake of a cylinder 57
2.4.3 Flow behind a sphere 58
3 Kinematics of Fluids 60
3.1 Description of the motion of a fluid 60
3.1.1 Characteristic linear scales and the hypothesis of continuity 60
3.1.2 Eulerian and Lagrangian descriptions of fluid motion 61
3.1.3 Acceleration of a particle of fluid 61
3.1.4 Streamlines and stream-tubes, trajectories and streaklines 63
3.2 Deformations in flows 64
3.2.1 Local components of the velocity gradient field 64
3.2.2 Analysis of the symmetric component of the rate of strain tensor: pure strain 65
3.2.3 Antisymmetric component of the tensor of the rate of deformation: pure rotation 68
3.2.4 Application 70
3.2.5 Case of large deformations 71
3.3 Conservation of mass in a moving fluid 72
3.3.1 Equation for the conservation of mass 73
3.3.2 Condition for an incompressible fluid 73
3.3.3 Rotational flows; potential flows 75
3.4 The stream function 75
3.4.1 Introduction and significance of the stream function 75
3.4.2 Stream functions for two-dimensional flows 77
3.4.3 Stream functions for axially symmetric flows 79
3.5 Visualization and measurement of the velocity and of the velocity gradients in flows 80
3.5.1 Visualization of flows 81
3.5.2 Concentration measurements 83
3.5.3 A few methods for measuring the local velocity in a fluid 83
3.5.4 Measurements of the velocity field and of velocity-gradients in a flowing fluid 86
4 Dynamics of viscous fluids: rheology and parallel flows 90
4.1 Surface forces 90
4.1.1 General expression for the surface forces: stresses in a fluid 90
4.1.2 Characteristics of the viscous shear stress tensor 92
4.1.3 The viscous shear-stress tensor for a Newtonian fluid 93
4.2 Equation of motion for a fluid 95
4.2.1 General equation for the dynamics of a fluid 95
4.2.2 Navier-Stokes equation of motion for a Newtonian fluid 97
4.2.3 Euler s equation of motion for an ideal fluid 97
4.2.4 Dimensionless form of the Navier-Stokes equation 98
4.3 Boundary conditions for fluid flow 98
4.3.1 Boundary condition at a solid wall 98
4.3.2 Boundary conditions at the interface between two fluids: surface tension effects 99
4.4 Non-Newtonian fluids 101
4.4.1 Measurement of rheological characteristics 101
4.4.2 Time-independent non-Newtonian fluids 102
4.4.3 Non-Newtonian time-dependent fluids 106
4.4.4 Complex viscosity and elasticity of viscoelastic fluids 108
4.4.5 Anisotropic normal stresses 111
4.4.6 Elongational viscosity 113
4.4.7 Summary of the principal kinds of non-Newtonian fluids 114
4.5 One-dimensional flow of viscous Newtonian fluids 115
4.5.1 Navier-Stokes equation for one-dimensional flow 115
4.5.2 Couette flow between parallel planes 116
4.5.3 Poiseuille-type flows 117
4.5.4 Oscillating flows in a viscous fluid 120
4.5.5 Parallel flow resulting from a horizontal density variation 124
4.5.6 Cylindrical Couette flow 125
4.6 Simple one-dimensional, steady state flows of non-Newtonian fluids 127
4.6.1 Steady-state Couette plane flow 128
4.6.2 One-dimensional flow between fixed walls 128
4.6.3 Velocity profiles for simple Theological behavior 130
4.6.4 Flow of a viscoelastic fluid near an oscillating plane 132
4A Appendix - Representation of the equations of fluid mechanics in different systems of coordinates 134
4A.1 Representation of the stress-tensor, the equation of conservation of mass and the Navier-Stokes
equations in Cartesian coordinates (x, y, z) 134
4A.2 Representation of the stress-tensor, the equation of conservation of mass, and the Navier-Stokes
equations in cylindrical coordinates (r, p, z) 134
4A.3 Representation of the stress-tensor, the equation of conservation of mass, and the Navier-Stokes
equations in spherical polar coordinates (r, 8, p) 135
Exercises 136
5 Conservation Laws 138
5.1 Equation of conservation of mass 138
5.2 Conservation of momentum 139
5.2.1 The local equation 139
5.2.2 The integral expression of the law of conservation of momentum 139
5.3 The conservation of kinetic energy; Bernoulli s Equation 142
5.3.1 The conservation of energy for a flowing incompressible fluid with or without viscosity 143
5.3.2 Bernoulli s equation and its applications 146
5.3.3 Applications of Bernoulli s equation 147
5.4 Applications of the laws of conservation of energy and momentum 152
5.4.1 Jet incident onto a plane 152
5.4.2 Exit jet from an opening in a reservoir 154
5.4.3 Force on the walls of an axially symmetric conduit of varying cross-section 157
5.4.4 Liquid sheets of varying thickness: the hydraulic jump 158
Exercises 164
6 Potential Flow 166
6.1 Introduction 166
6.2 Definitions, properties and examples of potential flow 167
6.2.1 Characteristics and examples of velocity potentials 167
6.2.2 Uniqueness of the velocity potential 168
6.2.3 Velocity potentials for simple flows and combinations of potential functions 170
6.2.4 Examples of simple potential flows 174
6.3 Forces acting on an obstacle in potential flow 180
6.3.1 Two-dimensional flows 181
6.3.2 Added mass effects for a three-dimensional body undergoing acceleration in an ideal fluid 184
6.4 Linear surface waves on an ideal fluid 187
6.4.1 Swell, ripples and breaking waves 187
6.4.2 Trajectories of fluid particles during the passage of a wave 191
6.4.3 Solitons 192
6.4.4 Another example of potential flow in the presence of an interface: the Taylor bubble 193
6.5 Electrical analog for two-dimensional potential flows 194
6.5.1 Direct analog 195
6.5.2 Inverse analog 195
6.6 Complex velocity potential 196
6.6.1 Definition of the complex potential 196
6.6.2 Complex velocity potential for several types of flow 197
6.6.3 Conformai mapping 199
6A Appendix: Velocity potentials and stream functions 206
6A. 1 Velocity potentials and stream functions for two-dimensional flows 206
6A.2 Derivation of the velocity components from the stream function 207
6A.3 Derivation of the velocity components from the velocity potential function 207
Exercises 207
7 Vorticity, Vortex Dynamics and Rotating Flows 210
7.1 Vorticity: its definition, and an example of straight vortex filaments 210
7.1.1 The concept of vorticity 210
7.1.2 A simple model of a line vortex: the Rankine vortex 212
7.1.3 Electromagnetic analogies 215
7.2 Dynamics of the circulation of the flow velocity 218
7.2.1 Kelvin s theorem: conservation of the circulation 218
7.2.2 Sources of circulation 221
7.3 Dynamics of vorticity 226
7.3.1 Transport equation for vorticity, and its consequences 226
7.3.2 Equilibrium between elongation and diffusion in the dynamics of vorticity 230
7.4 A few examples of distributions of vorticity concentrated along singularities 232
7.4.1 Vorticity concentrated along specific lines 232
7.4.2 Dynamics of a system of parallel-line vortices 233
7.4.3 Vortex rings 239
7.5 Vortices, vorticity and movement in air and water 241
7.5.1 Thrust due to an emission of vortices 241
7.5.2 The effects of lift 243
7.5.3 Lift and propulsion 246
7.6 Rotating fluids 247
7.6.1 Motion of a fluid in a rotating reference frame 247
7.6.2 Flows at small Rossby numbers 252
7.6.3 Waves within rotating fluids 255
7.6.4 The effect of viscosity near the walls: the Ekman layer 263
7.7 Vorticity, rotation and secondary flows 266
7.7.1 Secondary flows due to the curvature of channels or due to channels with a free surface 266
7.7.2 Secondary flows in transient motion 267
7.7.3 Secondary flows associated with Ekman layer effects 269
7A Appendix - An almost perfect fluid: superfluid helium 270
7A.1 General considerations 270
7A.2 Two-fluid model for superfluid helium 271
7A.3 Experimental evidence for the existence of a superfluid component which flows without any energy
dissipation 271
7A.4 Superfluid helium: a quantum fluid 272
7A.5 Experiments involving superfluid vortices 273
Exercises 274
8 Quasi-Parallel Flows - Lubrication Approximation 277
8.1 Lubrication approximation 277
8.1.1 Quasi-parallel flows 277
8.1.2 Assumptions of the lubrication approximation 278
8.1.3 Non-stationary effects 280
8.1.4 Equations of motion in the lubrication approximation 280
8.1.5 An example of the application of the equation for lubrication: stationary flow between two
moving planes making a small angle to each other 281
8.1.6 Flow of a fluid film of arbitrary thickness 283
8.1.7 Flow between two eccentric cylinders with nearly equal radii 286
8.1.8 Lubrication and surface roughness 288
8.2 Flow of liquid films having a free surface: hydrodynamics of wetting 288
8.2.1 Dynamics of thin liquid films, neglecting surface-tension effects 289
8.2.2 Dynamic contact angles 290
8.2.3 Dynamics of the spread of droplets on a flat surface 293
8.2.4 Flows resulting from surface-tension gradients: the Marangoni effect 296
8.3 Falling liquid cylindrical jet 300
8.3.1 Stable flow regime 300
8.3.2 Capillary effects and Rayleigh-Plateau instability of the jet 302
Exercises 304
9 Flows at Low Reynolds Number 308
9.1 Flows at small Reynolds number 308
9.1.1 Physical meaning of the Reynolds number 308
9.1.2 Examples of flows at low Reynolds number 309
9.1.3 Some important characteristic 310
9.2 Equation of motion at low Reynolds number 311
9.2.1 Stokes equation 311
9.2.2 Some equivalent forms of the Stokes equation 312
9.2.3 Properties of the solutions of the Stokes equation 312
9.2.4 Dimensional arguments for low Reynolds number flows 319
9.3 Forces and torques acting on a moving solid body 321
9.3.1 Linearity of the equations governing the velocity of the solid body and the forces acting on it 321
9.3.2 The effect of the symmetry properties of solid bodies on the applied forces and torques 322
9.3.3 Propulsion at low Reynolds numbers 326
9.4 Constant-velocity motion of a sphere in a viscous fluid 327
9.4.1 The velocity field around a moving sphere 327
9.4.2 Force acting on a moving sphere: the drag coefficient 331
9.4.3 Generalization of the solution of the Stokes equation to other experiments 333
9.5 Limitations of the Stokes description at low Reynolds numbers 338
9.5.1 Oseen s equation 338
9.5.2 Forces on an infinite circular cylinder in a uniform flow {Re 3C 1) 340
9.6 Dynamics of suspensions 341
9.6.1 Rheology of suspensions 342
9.6.2 Sedimentation of particles in suspension 344
9.7 Flow in porous media 345
9.7.1 A few examples 345
9.7.2 Parameters characterizing a porous medium 346
9.7.3 Flow in saturated porous media-Darcy s Law 348
9.7.4 Simple models of the permeability of porous media 352
9.7.5 Relationship between the electrical conductivity and the permeability of porous media 354
9.7.6 Flow of immiscible fluids in a porous medium 356
Exercises 360
10 Coupled Transport. Laminar Boundary Layers 363
10.1 Introduction 363
10.2 Structure of the boundary layer near a flat plate in uniform flow 364
10.3 Equations of motion within the boundary layer - Prandtl theory 366
10.3.1 Equations of motion near a flat plate 366
10.3.2 Transport of vorticity in the boundary layer 368
10.3.3 Self-similarity of the velocity profiles in the boundary layer for the case of uniform, constant,
external velocity 368
10.4 Velocity profiles within boundary layers 370
10.4.1 Blasius equation for uniform external flow along a flat plate 370
10.4.2 Velocity profile: the solution of Blasius s equation 371
10.4.3 Frictional force on a flat plate in uniform flow 373
10.4.4 Thicknesses of the boundary layers 374
10.4.5 Hydrodynamic stability of a laminar boundary layer - transition to turbulence 375
10.5 Laminar boundary layer in the presence of an external pressure gradient: boundary layer separation 376
10.5.1 Simplified physical treatment of the problem 376
10.5.2 Self-similar velocity profiles - flows of the form U(x) = C xm 376
10.5.3 Boundary layers of constant thickness 379
10.5.4 Flows lacking self-similarity - boundary layer separation 380
10.5.5 Practical consequences of boundary layer separation 381
10.6 Aerodynamics and boundary layers 381
10.6.1 Control of boundary layers on an airplane wing 381
10.6.2 Aerodynamics of road vehicles and trains 383
10.6.3 Aerodynamics of other land-based vehicles 385
10.6.4 Active and reactive control of the drag force and of the lift 386
10.7 Wake and laminar jet 386
10.7.1 Equation of motion of the wake 386
10.7.2 Drag force on a body - relationship with the velocity in the wake 389
10.7.3 Two-dimensional laminar jet 392
10.8 Thermal and mass boundary layers 393
10.8.1 Thermal boundary layers 393
10.8.2 Concentration boundary layers, polarography 397
10.8.3 Taylor dispersion 403
10.9 Flames 406
10.9.1 Flames, mixing and chemical reactions 407
10.9.2 Laminar diffusion flames 408
10.9.3 Premixed flames 411
10.9.4 Instability of a plane, premixed flame 414
Exercises 415
11 Hydrodynamic instabilities 417
11.1 A global approach to instability: the Landau model 417
11.1.1 A simple experimental model of a mechanical instability 418
11.1.2 Flow around a cylinder in the neighborhood of the vortex-generation threshold 420
11.1.3 Time-dependent evolution of the instabilities in the Landau model 420
11.2 The Rayleigh-Bénard instability 423
11.2.1 Convective thermal transport equations 423
11.2.2 Stability of a layer of fluid in the presence of a vertical gradient of temperature 424
11.2.3 Description of the Rayleigh-Bénard instability 425
11.2.4 Mechanism for the Rayleigh-Bénard instability and corresponding orders of magnitude 425
11.2.5 Two-dimensional solution of the Rayleigh-Bénard problem 427
11.2.6 The Landau model applied to Rayleigh-Bénard convection 432
11.2.7 Evolution toward turbulence above the convection threshold 432
11.3 Other closed box instabilities 433
11.3.1 Thermocapillary Bénard-Marangoni instability 433
11.3.2 Taylor-Couette instability 437
11.3.3 Other centrifugal instabilities 439
11.4 Instabilities in open flows 440
11.4.1 Kelvin-Helmholtz instability 440
11.4.2 Role of the shape of the velocity profile for open flows 445
11.4.3 Sub-critical instabilities for Poiseuille and Couette flows 446
12 Turbulence 448
12.1 A long history 448
12.2 The fundamental equations 449
12.2.1 Statistical description of turbulent flows 449
12.2.2 Derivatives of average values 450
12.2.3 Governing equations of turbulent flows 451
12.2.4 Energy balance in a turbulent flow 453
12.2.5 Transport of the vorticity in a turbulent flow 455
12.3 Empirical expressions for the Reynolds tensor and applications to free flows 457
12.3.1 Closure of the Reynolds equation 457
12.3.2 Eddy viscosity 458
12.3.3 Mixing length 458
12.3.4 Other practical approaches to turbulence 459
12.4 Free turbulent flows: jets and wakes 460
12.4.1 Basic properties of two-dimensional and turbulent jets and wakes 460
12.4.2 Self-similar velocity fields in two-dimensional jets and wakes 463
12.4.3 Three-dimensional axially symmetric turbulent jets and wakes 465
12.5 Flows near a solid wall 466
12.5.1 Qualitative properties of turbulent flows in the presence of a wall 466
12.5.2 Stationary turbulent flows parallel to a plane wall 466
12.5.3 Turbulent flow between two parallel plates 469
12.5.4 Pressure losses and coefficient of friction for flows between parallel planes and in tubes 473
12.5.5 Turbulent boundary layers 475
12.5.6 Separation of turbulent boundary layers 477
12.6 Homogeneous turbulence - Kolmogorov s theory 479
12.6.1 Energy cascade in a homogeneous turbulent flow 479
12.6.2 Spectral expression of Kolmogorov s laws 482
12.6.3 Experimental verification of Kolmogorov s theory 485
12.7 Other aspects of turbulence 486
12.7.1 Intermittent turbulence 486
12.7.2 Coherent turbulent structures 486
12.7.3 Dynamics of vortices in two-dimensional turbulence 487
Exercises 488
Solutions to the Exercises 491
Bibliography
Index 507
|
any_adam_object | 1 |
author_GND | (DE-588)172111064 |
building | Verbundindex |
bvnumber | BV041980428 |
callnumber-first | Q - Science |
callnumber-label | QA911 |
callnumber-raw | QA911 |
callnumber-search | QA911 |
callnumber-sort | QA 3911 |
callnumber-subject | QA - Mathematics |
classification_rvk | UF 4000 |
classification_tum | PHY 220f |
ctrlnum | (OCoLC)903592175 (DE-599)BVBBV041980428 |
dewey-full | 532.5 530.42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics 530 - Physics |
dewey-raw | 532.5 530.42 |
dewey-search | 532.5 530.42 |
dewey-sort | 3532.5 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01733nam a2200457 c 4500</leader><controlfield tag="001">BV041980428</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150619 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140717s2015 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198702443</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-0-19-870244-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198702450</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-0-19-870245-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)903592175</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041980428</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">fre</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA911</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532.5</subfield><subfield code="2">21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.42</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4000</subfield><subfield code="0">(DE-625)145577:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 220f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="130" ind1="0" ind2=" "><subfield code="a">Hydrodynamique physique</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physical hydrodynamics</subfield><subfield code="c">Etienne Guyon ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 512 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrodynamica</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vloeistofmechanica</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrodynamics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guyon, Étienne</subfield><subfield code="d">1935-2023</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)172111064</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027422895&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027422895</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV041980428 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:09:48Z |
institution | BVB |
isbn | 9780198702443 9780198702450 |
language | English French |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027422895 |
oclc_num | 903592175 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-20 DE-19 DE-BY-UBM DE-11 DE-91 DE-BY-TUM DE-634 DE-703 DE-188 DE-29T DE-384 |
owner_facet | DE-91G DE-BY-TUM DE-20 DE-19 DE-BY-UBM DE-11 DE-91 DE-BY-TUM DE-634 DE-703 DE-188 DE-29T DE-384 |
physical | XVII, 512 S. Ill., graph. Darst. |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Oxford Univ. Press |
record_format | marc |
spelling | Hydrodynamique physique Physical hydrodynamics Etienne Guyon ... 2. ed. Oxford [u.a.] Oxford Univ. Press 2015 XVII, 512 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Hydrodynamica gtt Vloeistofmechanica gtt Hydrodynamics Hydrodynamik (DE-588)4026302-2 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Hydrodynamik (DE-588)4026302-2 s DE-604 Guyon, Étienne 1935-2023 Sonstige (DE-588)172111064 oth HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027422895&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Physical hydrodynamics Hydrodynamica gtt Vloeistofmechanica gtt Hydrodynamics Hydrodynamik (DE-588)4026302-2 gnd |
subject_GND | (DE-588)4026302-2 (DE-588)4123623-3 |
title | Physical hydrodynamics |
title_alt | Hydrodynamique physique |
title_auth | Physical hydrodynamics |
title_exact_search | Physical hydrodynamics |
title_full | Physical hydrodynamics Etienne Guyon ... |
title_fullStr | Physical hydrodynamics Etienne Guyon ... |
title_full_unstemmed | Physical hydrodynamics Etienne Guyon ... |
title_short | Physical hydrodynamics |
title_sort | physical hydrodynamics |
topic | Hydrodynamica gtt Vloeistofmechanica gtt Hydrodynamics Hydrodynamik (DE-588)4026302-2 gnd |
topic_facet | Hydrodynamica Vloeistofmechanica Hydrodynamics Hydrodynamik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027422895&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | UT hydrodynamiquephysique AT guyonetienne physicalhydrodynamics |